251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. Боковые ребра пирамиды равны друг другу, а ее высота равна 12 см. Найдите боковое ребро пирамиды, если ВС = 10 см

Выделите её мышкой и нажмите CTRL + ENTER

Большое спасибо всем, кто помогает делать сайт лучше! =)

ГДЗ по геометрии 10 класс Атанасян Л. С. задание / 244

Подробное решение задание 244 по геометрии для учащихся 10 класса, авторов Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Киселева Л. С., Позняк Э. Г. 2015

244. Основанием пирамиды DABC является прямоугольный треугольник ABC, у которого гипотенуза АВ равна 29 см, а катет АС равен 21 см. Боковое ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.

Основанием пирамиды dabc является прямоугольный треугольник abc сторона

vk397114329 ? Решение: ? (5-?x^2)/ sqrt(x)dx= = ? 5dx/ sqrt(x)- ? x^1/6dx=10xsgrt(x)/3-6x^7/6/7+c к задаче 22931. vk397114329 ? Решение: ОДЗ: <-x >0 12. Множество допустимых значений не содержит ни одного числа, поэтому уравнение не имеет действительных корней. Ответ:.

Основанием пирамиды dabc является прямоугольный треугольник abc сторона

Регистрация новых пользователей временно отключена

Основанием пирамиды DABC является правильный треугольник ABC? сторона которого равна (альфа).Ребро DA перпендикулярно к плоскости ABC? а плоскость DBC составляет с плоскостью ABC угол 30. Найдите площадь боковой поверхности пирамиды.

Ответ оставил Гость

AB=AC, углы DAB и DAC равны, сторона DA общая следовательно треугольники DAB и DAC равны. DC=DB, следовательно если опустить высоту на сторону ВС то это будет медиана, назовем ее DH. AH будет высотой в треугольноке ABC, по теореме Пифагора она равна a*sqrt(3)/2. По условию угол DHA равен 30, значит угол ADH равен 60, по теореме синусов получим что DH равно a. Находим площади бок поверхности: S(ADC)+S(ADB)+S(BDC)=DA*AC+DH*BC/2=a*a/2+a*a/2=a*a.

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Геометрия.

Основанием пирамиды dabc является прямоугольный треугольник abc сторона

Основанием пирамиды dabc является прямоугольный треугольник abc сторона

Регистрация новых пользователей временно отключена

Основанием пирамиды DABC является правильный треугольник ABC? сторона которого равна (альфа).Ребро DA перпендикулярно к плоскости ABC? а плоскость DBC составляет с плоскостью ABC угол 30. Найдите площадь боковой поверхности пирамиды.

Ответ оставил Гость

AB=AC, углы DAB и DAC равны, сторона DA общая следовательно треугольники DAB и DAC равны. DC=DB, следовательно если опустить высоту на сторону ВС то это будет медиана, назовем ее DH. AH будет высотой в треугольноке ABC, по теореме Пифагора она равна a*sqrt(3)/2. По условию угол DHA равен 30, значит угол ADH равен 60, по теореме синусов получим что DH равно a. Находим площади бок поверхности: S(ADC)+S(ADB)+S(BDC)=DA*AC+DH*BC/2=a*a/2+a*a/2=a*a.

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Геометрия.

Основанием пирамиды dabc является прямоугольный треугольник abc сторона

3.2. Пирамида — Атанасян 10 класс

240. Основанием пирамиды является параллелограмм, стороны которого равны 20 см и 36 см, а площадь равна 360 см2. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 12 см. Найдите площадь боковой поверхности пирамиды.

241. Основанием пирамиды является параллелограмм со сторонами 5 м и 4 м и меньшей диагональю 3 м. Высота пирамиды проходит через точку пересечения диагоналей основания и равна 2 м. Найдите площадь полной поверхности пирамиды.

242. Основанием пирамиды является квадрат, одно из боковых ребер перпендикулярно к плоскости основания. Плоскость боковой грани, не проходящей через высоту пирамиды, наклонена к плоскости основания под углом 45°. Наибольшее боковое ребро равно 12 см. Найдите: а) высоту пирамиды; б) площадь боковой поверхности пирамиды.

243. Основанием пирамиды DABC является треугольник ABC, у которого АВ = АС = 13 см, ВС = 10 см; ребро AD перпендикулярно к плоскости основания и равно 9 см. Найдите площадь боковой поверхности пирамиды.

244. Основанием пирамиды DABC является прямоугольный треугольник ABC, у которого гипотенуза АВ равна 29 см, а катет АС равен 21 см. Боковое ребро DA перпендикулярно к плоскости основания и равно 20 см. Найдите площадь боковой поверхности пирамиды.

245. Основанием пирамиды является прямоугольник, диагональ которого равна 8 см. Плоскости двух боковых граней перпендикулярны к плоскости основания, а две другие боковые грани образуют с основанием углы в 30° и 45°. Найдите площадь поверхности пирамиды.

246. Высота треугольной пирамиды равна 40 см, а высота каждой боковой грани, проведенная из вершины пирамиды, равна 41 см. а) Докажите, что высота пирамиды проходит через центр окружности, вписанной в ее основание, б) Найдите площадь основания пирамиды, если его периметр равен 42 см.

247. Двугранные углы при основании пирамиды равны. Докажите, что: а) высота пирамиды проходит через центр окружности, вписанной в основание пирамиды; б) высоты всех боковых граней, проведенные из вершины пирамиды, равны; в) площадь боковой поверхности пирамиды равна половине произведения периметра основания на высоту боковой грани, проведенную из вершины пирамиды.

248. Основанием пирамиды является треугольник со сторонами 12 см, 10 см и 10 см. Каждая боковая грань пирамиды наклонена к основанию под углом 45°. Найдите площадь боковой поверхности пирамиды.

249. В пирамиде все боковые ребра равны между собой. Докажите, что: а) высота пирамиды проходит через центр окружности, описанной около основания; б) все боковые ребра пирамиды составляют равные углы с плоскостью основания.

250. Основанием пирамиды является равнобедренный треугольник с углом 120°. Боковые ребра образуют с ее высотой, равной 16 см, углы в 45°. Найдите площадь основания пирамиды.

251. Основанием пирамиды DABC является прямоугольный треугольник с гипотенузой ВС. Боковые ребра пирамиды равны друг другу, а ее высота равна 12 см. Найдите боковое ребро пирамиды, если ВС = 10 см.

252. Основанием пирамиды DABC является равнобедренный треугольник ABC, в котором стороны АВ и АС равны, ВС = 6 см, высота АН равна 9 см. Известно также, что DA = DB = DC = 13 см. Найдите высоту пирамиды.

253. Основанием пирамиды является равнобедренная трапеция с основаниями 6 см и 4√6 см и высотой 5 см. Каждое боковое ребро пирамиды равно 13 см. Найдите ее высоту.

254. В правильной треугольной пирамиде сторона основания равна а, высота равна Н. Найдите: а) боковое ребро пирамиды; б) плоский угол при вершине пирамиды; в) угол между боковым ребром и плоскостью основания пирамиды; г) угол между боковой гранью и основанием пирамиды; д) двугранный угол при боковом ребре пирамиды.

255. В правильной треугольной пирамиде сторона основания равна 8 см, а плоский угол при вершине равен φ. Найдите высоту этой пирамиды.

256. В правильной четырехугольной пирамиде сторона основания равна m, а плоский угол при вершине равен а. Найдите: а) высоту пирамиды; б) боковое ребро пирамиды; в) угол между боковой гранью и плоскостью основания; г) двугранный угол при боковом ребре пирамиды.

257. Высота правильной треугольной пирамиды равна h, а двугранный угол при стороне основания равен 45°. Найдите площадь поверхности пирамиды.

258. Боковое ребро правильной четырехугольной пирамиды образует угол в 60° с плоскостью основания. Найдите площадь поверхности пирамиды, если боковое ребро равно 12 см.

259. В правильной четырехугольной пирамиде сторона основания равна 6 см, а угол наклона боковой грани к плоскости основания равен 60°. Найдите боковое ребро пирамиды.

260. В правильной треугольной пирамиде DABC через боковое ребро DC и высоту DO пирамиды проведена плоскость α. Докажите, что: а) ребро АВ перпендикулярно к плоскости α; б) перпендикуляр, проведенный из вершины С к апофеме грани ADB, является перпендикуляром к плоскости ADB.

261. Докажите, что в правильной треугольной пирамиде скрещивающиеся ребра взаимно перпендикулярны.

262. Докажите, что плоскость, проходящая через высоту правильной пирамиды и высоту боковой грани, перпендикулярна к плоскости боковой грани.

263. В правильной пирамиде MABCD точки К, L и N лежат соответственно на ребрах ВС, МС и AD, причем KN || ВА, KL || ВМ. а) Постройте сечение пирамиды плоскостью KLN и определите вид сечения, б) Докажите, что плоскость KLN параллельна плоскости AMВ.

264. Найдите площадь боковой поверхности правильной шестиугольной пирамиды, если сторона ее основания равна а, а площадь боковой грани равна площади сечения, проведенного через вершину пирамиды и большую диагональ основания.

265. В правильной треугольной пирамиде боковое ребро наклонено к плоскости основания под углом 60°. Через сторону основания проведена плоскость под углом 30° к плоскости основания. Найдите площадь получившегося сечения, если сторона основания пирамиды равна 12 см.

266. Основанием пирамиды, высота которой равна 2 дм, а боковые ребра равны друг другу, является прямоугольник со сторонами 6 дм и 8 дм. Найдите площадь сечения, проведенного через диагональ основания параллельно боковому ребру.

267. Пирамида пересечена плоскостью, параллельной основанию. Докажите, что боковые ребра и высота пирамиды делятся этой плоскостью на пропорциональные части.

268. Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1 : 2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 дм, а площадь ее полной поверхности равна 186 дм2. Найдите высоту усеченной пирамиды.

269. Стороны оснований правильной треугольной усеченной пирамиды равны 4 дм и 2 дм, а боковое ребро равно 2 дм. Найдите высоту и апофему пирамиды.

270. Основаниями усеченной пирамиды являются правильные треугольники со сторонами 5 см и 3 см соответственно. Одно из боковых ребер пирамиды перпендикулярно к плоскостям оснований и равно 1 см. Найдите площадь боковой поверхности усеченной пирамиды.