Арифметическая прогрессия

Арифметическая прогрессия — это числовая последовательность a1, a2, . , an, . , для которой для каждого натурального n выполняется равенство:

где d – это разность арифметической прогрессии.

Пример: последовательность чисел 3, 7, 11, 15, 19, . является арифметической прогрессией с разностью d = 4.

Арифметическая прогрессия бывает трех видов:

  1. Возрастающая — арифметическая прогрессия, у которой разность является положительной Пример: последовательность чисел 2, 5, 8, 11, 14, . является возрастающей арифметической прогрессией, так как ее разность d = 3.
  2. Убывающая— арифметическая прогрессия, у которой разность является отрицательной Пример: последовательность чисел 100, 98, 96, 94, 92, . является убывающей арифметической прогрессией, так как ее разность d = –2.
  3. Стационарная— арифметическая прогрессия, у которой разность равно нулю Пример: последовательность чисел 23, 23, 23, 23, 23, . является стационарной арифметической прогрессией, так как ее разность d = 0.

Основные формулы арифметической прогрессии

Члены арифметической прогрессии

Общая формула для вычисления n-ого члена арифметической прогрессии по первому члену и разности:

Следующий член арифметической прогрессии можно найти по предыдущему члену и разности:

Предыдущий член арифметической прогрессии можно найти по следующему члену и разности:

Также член арифметической прогрессии можно найти, если известны следующий и предыдущий члены:

Сумма арифметической прогрессии

Сумма первых n членов арифметической прогрессии равна

Также сумму можно вычислить, используя другую формулу:

Решение задач на арифметическую прогрессию

Рассмотрим несколько типичных задач, посвященных арифметической прогрессии.

Доказать, что последовательность, заданная формулой an = 5 + 4n, является арифметической.

Чтобы доказать, что последовательность является арифметической, достаточно получить следующий член этой последовательности и найти разность.

an+1 = 5 + 4(n + 1) = 5 + 4n + 4 = 9 + 4n

d = an+1 — an = 9 + 4n — (5 + 4n) = 9 + 4n — 5 — 4n = 4

Поскольку разность является числом, значит она будет одинакова для всех членов данной последовательности. Поэтому последовательность является арифметической прогрессией.

Найти 20 член арифметической прогрессии и сумму первых десяти, если a1 = -18 и d = 5

a20 = a1 + d ⋅ 19 = –18 + 5 ⋅ 19 = 77

S10 = (2 ⋅ (–18) + 5 ⋅ 9) ⋅ 10 / 2 = 45

Число 85 является членом арифметической прогрессии 8, 15, 22, 29, . . Найти номер этого члена.

Пусть n — номер, который нужно найти.

Применив формулу для вычисления n-ого члена арифметической прогрессии, можно получить n

В арифметической прогрессии a8 = 22 и a14 = 34. Найти формулу для n-ого члена.

Применив формулу для вычисления n-ого члена арифметической прогрессии по первому члену и разности находим:

Подставив в эти выражения a8 и a14 получаем систему уравнений:

Вычитая из первого уравнения второе, можно вычислить d:

Подставляем d в первое уравнение для получения a1:

Таким образом, формула для n-ого члена арифметической прогрессии выглядит так:

an = 8 + 2 ⋅ (n — 1) = 8 + 2n — 2 = 6 + 2n

Найти количество членов арифметической прогрессии 1, 3, 5, 7, . , если их сумма равна 81.

Из заданной арифметической прогрессии получаем a1 и d:

И подставляем известные данные в формулу суммы:

Арифметическая прогрессия – числовая последовательность

Кто-то к слову «прогрессия» относится настороженно, как к очень сложному термину из разделов высшей математики. А между тем самая простая арифметическая прогрессия – работа счётчика такси (где они ещё остались). И понять суть (а в математике нет ничего важнее, чем «понять суть») арифметической последовательности не так сложно, разобрав несколько элементарных понятий.

Математическая числовая последовательность

Числовой последовательностью принято именовать какой-либо ряд чисел, каждое из которых имеет свой номер.

а1 – первый член последовательности;

а2 – второй член последовательности;

а7 – седьмой член последовательности;

аn – n-ный член последовательности;

Однако не любой произвольный набор цифр и чисел интересует нас. Наше внимание сосредоточим на числовой последовательности, у которой значение n-ного члена связано с его порядковым номером зависимостью, которую можно чётко сформулировать математически. Иными словами: численное значение n-ного номера является какой-либо функцией от n.

a – значение члена числовой последовательности;

n – его порядковый номер;

f(n) – функция, где порядковый номер в числовой последовательности n является аргументом.

Определение

Арифметической прогрессией принято именовать числовую последовательность, в которой каждый последующий член больше (меньше) предыдущего на одно и то же число. Формула n-ного члена арифметической последовательности выглядит следующим образом:

an – значение текущего члена арифметической прогрессии;

an+1 – формула следующего числа;

d – разность (определённое число).

Нетрудно определить, что если разность положительна (d>0), то каждый последующий член рассматриваемого ряда будет больше предыдущего и такая арифметическая прогрессия будет возрастающей.

значение члена — an

На представленном ниже графике нетрудно проследить, почему числовая последовательность получила название «возрастающая».

В случаях, когда разность отрицательная (d (5-1) = 3 ∙ 1,5 4 = 15,1875

Сумма заданного числа членов рассчитывается так же с помощью специальной формулы. Сумма n первых членов геометрической прогрессии равна разности произведения n — ного члена прогрессии на его знаменатель и первого члена прогрессии, делённой на уменьшенный на единицу знаменатель:

Если bn заменить пользуясь рассмотренной выше формулой, значение суммы n первых членов рассматриваемого числового ряда примет вид:

Пример. Геометрическая прогрессия начинается с первого члена, равного 1. Знаменатель задан равным 3. Найдём сумму первых восьми членов.

Прогрессии (арифметическая, геометрическая), формулы.

Прогрессия — последовательность величин, каждая последующая из них находится в некоторой, общей для всей прогрессии, зависимости от предыдущей.

Арифметическая прогрессия .

Арифметическая прогрессия — это ряд чисел, в котором все член получаются из предыдущего методом добавления к нему 1-го и того же числа d, которое называется разностью арифметической прогрессии.

Или другими словами: арифметическая прогрессия — численная последовательность, которая имеет вид:

т. е. последовательность чисел (членов прогрессии), в которой числа, начиная со 2-го, получаются из предыдущего путем добавления к нему постоянного числа (шаг либо разность прогрессии):

Всякий (n-й) член прогрессии можно вычислить с помощью формулы общего члена:

Арифметическая прогрессия — это монотонная последовательность. При она возрастает, а при — убывает. Если , то последовательность — стационарная. Это следуют из соотношения для членов арифметической прогрессии.

Свойства арифметической прогрессии.

1. Общий член арифметической прогрессии.

Член арифметической прогрессии с номером можно найти с помощью формулы:

где — 1-й член прогрессии, — разность прогрессии.

2. Характеристическое свойство арифметической прогрессии.

Последовательность — это арифметическая прогрессия для элементов этой прогрессии выполняется условие:

3. Сумма 1-х членов арифметической прогрессии.

Сумму 1-х членов арифметической прогрессии можно найти с помощью формул:

где — 1-й член прогрессии,

где — 1-й член прогрессии,

— число суммируемых членов.

4. Сходимость арифметической прогрессии.

Арифметическая прогрессия является расходящейся при и сходящейся при . При этом:

5. Связь между арифметической и геометрической прогрессиями.

Есть — арифметическая прогрессия с разностью , где число . Тогда последовательность, которая имеет вид является геометрической прогрессией, имеющей знаменатель .

Примеры арифметических прогрессий.

1. Натуральный ряд 1, 2, 3, 4, 5,… является арифметической прогрессией, в которой 1-й член , а разность .

1, -1, -3, -5, -7 — первые пять членов арифметической прогрессии, в которой и .

2. Если каждый элемент некоторой последовательности имеет такую же величину, как и остальные элементы этой системы и равен некоторому числу , тогда это является арифметической прогрессией, в которой и . В частности, является арифметической прогрессией с разностью .

3. Сумма 1-х натуральных чисел выражают формулой:

Геометрическая прогрессия.

Геометрическая прогрессия — это последовательность чисел (членов прогрессии), в которой каждое число, начиная со 2-го, получают из предыдущего путем умножения его на определённое число (знаменатель прогрессии), где , : .

Или другими словами: геометрическая прогрессия — это численная последовательность, каждое из чисел равняется предыдущему, умноженному на определенное постоянное число q для данной прогрессии, которое называется знаменателем геометрической прогрессии.

Каждый член геометрической прогрессии можно вычислить при помощи формулы:

Когда и , значит, прогрессия возрастает , когда , значит, прогрессия убывает, а при — знакочередуется.

Название геометрическая прогрессия взяла из своего характеристического свойства:

т. е. все члены равны среднему геометрическому их соседей.

Свойства геометрической прогрессии.

1. Логарифмы членов геометрической прогрессии (если они определены) образуют арифметическую прогрессию:

2. Произведение 1-х n членов геометрической прогрессии рассчитывают при помощи формулы:

3. Произведение элементов геометрической прогрессии, начиная с k-ого члена, и заканчивая n-ым членом, рассчитывают при помощи формулы:

4. Сумма n 1-х членов геометрической прогрессии:

5. Если , то при , и при .

Примеры геометрических прогрессий.

1. Последовательность площадей квадратов, в которой каждый последующий квадрат получают соединением середин сторон предыдущего — геометрическая прогрессия со знаменателем ½, не имеющая предела. Площади образующихся на каждом этапе треугольников тоже образуют нескончаемую геометрическую прогрессию со знаменателем ½, сумма которой равняется площади начального квадрата.

2. Последовательность числа зёрен на клетках в задаче о зёрнах на шахматной доске.

3. 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — прогрессия со знаменателем 2 из 13 членов.

4. 50; −25; 12,5; −6,25; 3,125; … — нескончаемо убывающая прогрессия со знаменателем -½.

5. — геометрическая прогрессия со знаменателем равным единице (и арифметическая прогрессия с шагом 0).