Егэ-тренер. Подготовка 2018-2019 Тренинги в прямом эфире для учителей и учеников

7. Наименьшее значение производной по графику функции (вар. 46)

На рисунке изображён график функции y = f(x) и отмечены точки -2, -1, 1, 3. В какой из этих точек значение производной наименьшее?

В точках -1 и 3 (красные) производная равна нулю, это точки экстремума функции. Касательная к графику функции в этих точках параллельна оси ОХ. В точке -2 функция возрастает. Это значит, что производная в этой точке положительна. В точке 1 функция убывает. Это значит, что производная в этой точке отрицательна. Таким образом, имеем четыре числа — положительное, отрицательное и два нуля. Среди них наименьшим является отрицательное, т. е. производная в точке 1. Ответ: 1

Задания №7. Применение производной к исследованию функции

Часть 3.

Здесь смотрите части 1, 2, 4

Продолжаем разбор Задач №8 ЕГЭ по математике .

Сегодня нам понадобится при решении задач следующая таблица, показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной, то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.

На рисунке выделены цветом области убывания функции :

В эти области убывания функции попадает 4 целые значения .

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.

Производная равна нулю в точках экстремума. У нас их 4:

На рисунке изображён график функции и одиннадцать точек на оси абсцисс: . В скольких из этих точек производная функции отрицательна?

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках . Таких точек 4.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.

На рисунке выделены промежутки, на которых производная функции имеет знак плюс.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.

Длина наибольшего из них – 6.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .

Знак производной на – минус, так как график на этом отрезке ниже оси .

Это означает убывание функции на отрезке .

А значит, наибольшее значение функция принимает в начале отрезка, то есть в точке .

На рисунке изображен график — производной функции , определенной на интервале . Найдите количество точек максимума функции , принадлежащих отрезку .

На рисунке изображен график производной, значит нас на этом рисунке будут интересовать только знаки и нули производной.

Мы видим на рисунке на указанном отрезке ( ) три нуля у . Причем, производная мняет знак при переходе через них. Это точки экстремума функции (точки максимума и минимума).

При этом производная меняет знак с «+» на «-» в точке 8, помеченной красным цветом, и с «-» на «+» в двух точках (3 и 12), помеченных синим цветом.

Так вот при переходе через точку максимума функция меняет возрастание на убывание, а значит производная меняет знак с «+» на «-».

Итак, точка максимума одна (помечена красным цветом).

На рисунке изображен график функции и отмечены точки -3, 1, 6, 8. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Значение производной в точке касания равно угловому коэффициенту касательной. В свою очередь, угловой коэффициент касательной равен тангенсу угла наклона данной касательной к оси .

В точке -3 (точка минимума) производная равна нулю.

В точке 6 производная положительна, так как точки лежат на промежутке возрастания функции.

А вот в точках 1 и 8 производная отрицательна.

При этом в точке 8 угол наклона касательной явно меньше, чем в точке 1.

Поэтому в точке 8 тангенс угла наклона будет наименьшим, а значит и значение производной, будет наименьшее.

🙂 Самое время немного отдохнуть. Неправда ли? –> + показать

На рисунке изображён график производной функции

Здравствуйте! Ударим по приближающемуся ЕГЭ качественной систематической подготовкой, и упорством в измельчении гранита науки. В конце поста имеется конкурсная задача, будьте первым! В одной из статей данной рубрики мы с вами рассматривали задачи , в которых был дан график функции, и ставились различные вопросы, касающиеся экстремумов, промежутков возрастания (убывания) и прочие.

В этой статье рассмотрим задачи входящие в ЕГЭ по математике, в которых дан график производной функции, и ставятся следующие вопросы:

1. В какой точке заданного отрезка функция принимает наибольшее (или наименьшее) значение.

2. Найти количество точек максимума (или минимума) функции, принадлежащих заданному отрезку.

3. Найти количество точек экстремума функции, принадлежащих заданному отрезку.

4. Найти точку экстремума функции, принадлежащую заданному отрезку.

5. Найти промежутки возрастания (или убывания) функции и в ответе указать сумму целых точек, входящих в эти промежутки.

6. Найти промежутки возрастания (или убывания) функции. В ответе указать длину наибольшего из этих промежутков.

7. Найти количество точек, в которых касательная к графику функции параллельна прямой вида у = kx + b или совпадает с ней.

8. Найти абсциссу точки, в которой касательная к графику функции параллельна оси абсцисс или совпадает с ней.

Могут стоять и другие вопросы, но они не вызовут у вас затруднений, если вы поняли геометрический смысл производной и свойства производной для исследования функций (ссылки указаны на статьи, в которых представлена необходимая для решения информация, рекомендую повторить).

Основная информация (кратко):

1. Производная на интервалах возрастания имеет положительный знак.

Если производная в определённой точке из некоторого интервала имеет положительное значение, то график функции на этом интервале возрастает.

2. На интервалах убывания производная имеет отрицательный знак.

Если производная в определённой точке из некоторого интервала имеет отрицательное значение, то график функции на этом интервале убывает.

3. Производная в точке х равна угловому коэффициенту касательной, проведённой к графику функции в этой же точке.

4. В точках экстремума (максимума-минимума) функции производная равна нулю. Касательная к графику функции в этой точке параллельна оси ох.

Это нужно чётко уяснить и помнить.

Многих график производной «смущает». Некоторые по невнимательности принимают его за график самой функции. Поэтому в таких зданиях, где видите, что дан график, сразу же акцентируйте своё внимание в условии на том, что дано: график функции или график производной функции?

Если это график производной функции, то относитесь к нему как бы к «отражению» самой функции, которое просто даёт вам информацию об этой функции.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–2;21).

Ответим на следующие вопросы:

1. В какой точке отрезка [7;15] функция f(х) принимает наибольшее значение.

На заданном отрезке производная функции отрицательна, значит функция на этом отрезке убывает (она убывает от левой границы интервала к правой). Таким образом, наибольшее значение функции достигается на левой границе отрезка, т. е. в точке 7.

2. В какой точке отрезка [3;6] функция f(х) принимает наименьшее значение.

По данному графику производной можем сказать следующее. На заданном отрезке производная функции положительна, значит функция на этом отрезке возрастает (она возрастает от левой границы интервала к правой). Таким образом, наименьшее значение функции достигается на левой границе отрезка, то есть в точке х = 3.

3. Найдите количество точек максимума функции f(х), принадлежащих отрезку [0;20].

Точки максимума соответствуют точкам смены знака производной с положительного на отрицательный. Рассмотрим, где таким образом меняется знак.

На отрезке (3;6) производная положительна, на отрезке (6;16) отрицательна.

На отрезке (16;18) производная положительна, на отрезке (18;20) отрицательна.

Таким образом, на заданном отрезке [0;20] функция имеет две точки максимума х = 6 и х = 18.

4. Найдите количество точек минимума функции f(х), принадлежащих отрезку [0;4].

Точки минимума соответствуют точкам смены знака производной с отрицательного на положительный. У нас на интервале (0;3) производная отрицательна, на интервале (3;4) положительна.

Таким образом, на отрезке [0;4] функция имеет только одну точку минимума х = 3.

*Будьте внимательны при записи ответа – записывается количество точек, а не значение х, такую ошибку можно допустит из-за невнимательности.

5. Найдите количество точек экстремума функции f(х), принадлежащих отрезку [0;20].

Обратите внимание, что необходимо найти количество точек экстремума (это и точки максимума и точки минимума).

Точки экстремума соответствуют точкам смены знака производной (с положительного на отрицательный или наоборот). На данном в условии графике это нули функции. Производная обращается в нуль в точках 3, 6, 16, 18.

Таким образом, на отрезке [0;20] функция имеет 4 точки экстремума.

6. Найдите промежутки возрастания функции f(х). В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки возрастания данной функции f(х) соответствуют промежуткам, на которых ее производная положительна, то есть интервалам (3;6) и (16;18). Обратите внимание, что границы интервала не входят в него (круглые скобки – границы не включены в интервал, квадратные – включены). Данные интервалы содержат целые точки 4, 5, 17. Их сумма равна: 4 + 5 + 17 = 26

7. Найдите промежутки убывания функции f(х) на заданном интервале. В ответе укажите сумму целых точек, входящих в эти промежутки.

Промежутки убывания функции f(х) соответствуют промежуткам, на которых производная функции отрицательна. В данной задаче это интервалы (–2;3), (6;16), (18;21).

Данные интервалы содержат следующие целые точки: –1, 0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 19, 20. Их сумма равна:

( –1) + 0 + 1 + 2 + 7 + 8 + 9 + 10 +

+ 11 + 12 + 13 + 14 + 15 + 19 + 20 = 140

*Обращайте внимание в условии: включены ли границы в интервал или нет. Если границы будут включены, то и в рассматриваемых в процессе решения интервалах эти границы также необходимо учитывать.

8. Найдите промежутки возрастания функции f(х). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции f(х) соответствуют промежуткам, на которых производная функции положительна. Мы уже указывали их: (3;6) и (16;18). Наибольшим из них является интервал (3;6), его длина равна 3.

9. Найдите промежутки убывания функции f(х). В ответе укажите длину наибольшего из них.

Промежутки убывания функции f(х) соответствуют промежуткам, на которых производная функции отрицательна. Мы уже указывали их, это интервалы (–2;3), (6;16), (18;21), их длины соответственно равны 5, 10, 3.

Длина наибольшего равна 10.

10. Найдите количество точек, в которых касательная к графику функции f(х) параллельна прямой у = 2х + 3 или совпадает с ней.

Значение производной в точке касания равно угловому коэффициенту касательной. Так как касательная параллельна прямой у = 2х + 3 или совпадает с ней, то их угловые коэффициенты равны 2. Значит, необходимо найти количество точек, в которых у′(х0) = 2. Геометрически это соответствует количеству точек пересечения графика производной с прямой у = 2. На данном интервале таких точек 4.

11. Найдите точку экстремума функции f(х), принадлежащую отрезку [0;5].

Точка экстремума функции это такая точка, в которой её производная равна нулю, при чём в окрестности этой точки производная меняет знак (с положительного на отрицательный или наоборот). На отрезке [0;5] график производной пересекает ось абсцисс, производная меняет знак с отрицательного на положительный. Следовательно, точка х = 3 является точкой экстремума.

12. Найдите абсциссы точек, в которых касательные к графику у = f (x) параллельны оси абсцисс или совпадают с ней. В ответе укажите наибольшую из них.

Касательная к графику у = f (x) может быть параллельна оси абсцисс или совпадать с ней, только в точках, где производная равна нулю (это могут быть точки экстремума или стационарные точки, в окрестностях которых производная свой знак не меняет). По данному графику видно, что производная равна нулю в точках 3, 6, 16,18. Наибольшая равна 18.

Можно построить рассуждение таким образом:

Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, её угловой коэффициент равен 0 (действительно тангенс угла в ноль градусов равен нулю). Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс, а это точки 3, 6, 16,18.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–8;4). В какой точке отрезка [–7;–3] функция f(х) принимает наименьшее значение.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–7;14). Найдите количество точек максимума функции f(х), принадлежащих отрезку [–6;9].

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–18;6). Найдите количество точек минимума функции f(х), принадлежащих отрезку [–13;1].

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–11; –11). Найдите количество точек экстремума функции f(х), принадлежащих отрезку [–10; –10].

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–7;4). Найдите промежутки возрастания функции f(х). В ответе укажите сумму целых точек, входящих в эти промежутки.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–5;7). Найдите промежутки убывания функции f(х). В ответе укажите сумму целых точек, входящих в эти промежутки.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–11;3). Найдите промежутки возрастания функции f(х). В ответе укажите длину наибольшего из них.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–2;12). Найдите промежутки убывания функции f(х). В ответе укажите длину наибольшего из них.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–10;2). Найдите количество точек, в которых касательная к графику функции f(х) параллельна прямой у = –2х – 11 или совпадает с ней.

На рисунке изображен график у = f′(х) — производной функции f(х), определенной на интервале (–4;8). Найдите точку экстремума функции f(х), принадлежащую отрезку [–2;6].

На рисунке изображен график у = f′(х) — производной функции f(х). Найдите абсциссу точки, в которой касательная к графику у=f(х) параллельна прямой у = 2х – 2 или совпадает с ней.

На рисунке изображен график у = f′(х) — производной функции f(х). Найдите абсциссу точки, в которой касательная к графику у = f(х) параллельна оси абсцисс или совпадает с ней.

На этом всё. В данной рубрике мы продолжим рассматривать задачи, не пропустите !

Условие задачи то же (которую мы рассматривали). Найдите сумму трёх чисел:

1. Сумма квадратов экстремумов функции f (х).

2. Разность квадратов суммы точек максимума и суммы точек минимума функции f (х).

3. Количество касательных к f (х), параллельных прямой у = –3х + 5.

Первый, кто даст верный ответ, получит поощрительный приз – 150 рублей. Ответы пишите в комментариях. Если это ваш первый комментарий на блоге, то сразу он не появится, чуть позже (не беспокойтесь, время написания комментария регистрируется).