Элементы треугольника. Высоты, медианы, биссектрисы

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки на отрезок , зато можем опустить его на прямую — то есть на продолжение стороны .

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Пусть биссектрисы треугольника (в котором угол равен ) пересекаются в точке .

Острый угол между биссектрисами на рисунке обозначен .

Угол смежный с углом , следовательно, .

Поскольку треугольник — прямоугольный, то .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Пусть — высота, проведенная из вершины прямого угла , — биссектриса угла .

Угол между высотой и биссектрисой — это угол .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Из треугольника (угол — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

4. В треугольнике угол равен , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Пусть в треугольнике угол равен , угол равен .

Из треугольника получим, что .

5. В треугольнике угол равен , угол равен . , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Найдем угол . Он равен .

Из треугольника найдем угол . Он равен .

6. В треугольнике , — медиана, угол равен , угол равен . Найдите угол . Ответ дайте в градусах.

Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.

Свойства биссектрисы и медианы треугольника

В этой статье вы найдете свойства биссектрисы и медианы треугольника, которые могут быть полезны при решении задач.

Биссектрисы.

1. Точка пересечения биссектрис треугольника является центром вписанной в треугольник окружности.

Действительно, точки, лежащие на биссектрисе угла равноудалены от сторон угла. Следовательно, точка пересечения биссектрис равноудалена от всех сторон треугольника, то есть является центром вписанной окружности.

2. Биссектриса треугольника делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам:

Сделаем дополнительные построения. Проведем через точку прямую , параллельную

-точка пересечения прямой и прямой :

∠1=∠2, так как — биссектриса ∠

∠2=∠3 как накрест лежащие, так как по построению.

Следовательно, ∠1=∠3 и треугольник — равнобедренный, и .

Далее. Треугольник подобен треугольнику по двум углам:

3. Длина биссектрисы вычисляется по таким формулам:

Докажем вторую формулу.

Приравняем выражения для площади треугольника :

4. Пусть О-центр вписанной окружности, — биссектриса угла треугольника :

Тогда выполняется соотношение:

— биссектриса угла , следовательно, по свойству биссектрисы треугольника

Выразим . По свойству биссектрисы треугольника :

Биссектрису треугольника в некоторых задачах удобно продолжить до пересечения с описанной окружностью.

Лемма о трилистнике.

Дан треугольник . Точка — точка пересечения биссектрисы угла с описанной около треугольника окружностью. Пусть — центр вписанной в треугольник окружности. Тогда

Вписанные углы, которые опираются на равные дуги равны. Отметим равные вписанные углы:

— центр вписанной окружности, поэтому — бисссектриса угла .

Тогда из треугольника

То есть треугольник — равнобедренный.

Докажем формулу (1) из п. 3:

Продолжим биссектрису до пересечения с описанной окружностью. Рассмотрим треугольники и . Отметим равные углы:

Треугольник подобен треугольнику по двум углам. Отсюда:

По свойству отрезков пересекающихся хорд

Подставим (3) в (2) и воспользуемся (4):

Выразим длины отрезков, на которые биссектриса делит сторону треугольника через длины сторон треугольника. Введем обозначения:

1. Медианы треугольника делятся точкой пересечения в отношении 2:1, считая от вершины:

2. Пусть — точка внутри треугольника такая, что выполняется соотношение: , то — точка пересечения медиан треугольника .

Докажем вспомогательную теорему.

Для произвольной точки внутри треугольника выполняется соотношение:

Опустим из точек и перпендикуляры на :

Из подобия треугольников и получаем:

Если мы рассмотрим треугольники и с общим основанием , то получим соотношение:

Сложив эти равенства получим:

Используем эту лемму для доказательства утверждения 2.

Если выполняется равенство (1) , то выполняется равенство (2) и из леммы следует, что в равенстве (2) каждая дробь равна .

Докажем, что в этом случае отрезки являются медианами.

Если , то получаем . Проведем через точку прямые, параллельные и и рассмотрим две пары подобных треугольников: и :

Из подобия треугольников получаем , то есть точка — середина отрезка . Отсюда .

Следовательно, — медиана треугольника .

3. Медианы треугольника, пересекаясь, разбивают его на 6 равновеликих треугольника.

1. Прямые, содержащие высоты треугольника пересекаются в одной точке. В случае остроугольного треугольника в одной точке пересекаются сами высоты.

2. Точка пересечения высот треугольника обладает следующим свойством: сумма квадрата расстояния от вершины треугольника и квадрата противолежащей стороны одинаковая для любой вершины:

Докажем первую часть равенства:

Перепишем его в виде:

По теореме Пифагора: (из треугольников и )

Подставим эти выражения в (1), получим:

Раскроем скобки, получим:

Получили тождество. Вторая часть равенства доказывается аналогично.

3. Если описать вокруг треугольника окружность и продлить высоты треугольника до пересечения с этой окружностью,

то для любой высоты треугольника расстояние от основания высоты до точки пересечения продолжения высоты с окружностью равно расстоянию от основания высоты до точки пересечения высот:

Или так: Точки, симметричные точке пересечения высот треугольника относительно сторон треугольника, лежат на описанной около треугольника окружности.

Для этого рассмотрим треугольники и , и докажем, что :

Воспользуемся признаком равенства треугольников по стороне и двум прилежащим углам. — общая сторона. Докажем равенство двух углов.

Пусть ∠ , тогда из треугольника получим, что

∠ . Следовательно, из треугольника получим, что

Но ∠ и ∠ опираются на одну дугу , следовательно, ∠ ∠ ∠

Аналогично получаем, что ∠ ∠

4. В треугольнике точки и — основания высот, проведенных из вершин и . Доказать, что треугольник подобен треугольнику и коэффициент подобия равен .

Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы . Точка лежит на этой окружности, так как — гипотенуза прямоугольного треугольника :

, как вписанные углы, опирающиеся на одну дугу.

Отсюда . Угол — общий угол треугольников и . Следовательно, треугольник подобен треугольнику . Коэффициент подобия равен отношению сходственных сторон, то есть сторон, которые лежать против равных углов:

Теорема Чевы

Пусть в треугольнике

Отрезки пересекаются в одной точке в том и только том случае, если

Докажем, что если отрезки пересекаются в одной точке, то соотношение (1) выполняется.

Легко проверить, что если , то выполняется

Применим это свойство пропорции:

Теорему Чевы можно записать в таком виде:

Если отрезки пересекаются в одной точке, то выполняется соотношение:

Чтобы доказать теорему Чевы в форме синусов, достаточно во вторую часть равенства (2) вместо площадей треугольников подставить для площади каждого треугольника формулу .

Из лекций Агаханова Назара Хангельдыевича и Владимира Викторовича Трушкова, КПК МФТИ.

Высота медиана и биссектриса треугольника определения и свойства

На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0. Решение. Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной.

Медиана, высота и биссектриса и их свойства

    Медиана, высота и биссектриса и их свойства Как найти сторону равнобедренного треугольника, если дано основание Как построить октаэдр

Медиана и ее свойства

Медиана – это одна из основных линий треугольника. Этот отрезок и прямая, на которой он лежит, соединяет точку во главе угла треугольника с серединой противолежащей стороны этой же фигуры. В равностороннем треугольнике медиана является также биссектрисой и высотой.

Биссектриса

Биссектриса представляет собой луч, который начинается в вершине угла и делит этот же угол пополам. Точки, лежащие на данном луче, равноудалены от сторон угла. Свойства биссектрисы хорошо помогают в решении задач, связанных с треугольниками.

Также как медиана и биссектриса, высота в треугольнике в первую очередь связывают вершину угла и противолежащую сторону. Это связь проистекает в следующем: высота – это перпендикуляр, проведенный из вершины, к прямой, которая содержит в себе противолежащую сторону.

Высота медиана и биссектриса треугольника определения и свойства

Медиана, высота и биссектриса и их свойства

    Медиана, высота и биссектриса и их свойства Как найти сторону равнобедренного треугольника, если дано основание Как построить октаэдр

Медиана и ее свойства

Медиана – это одна из основных линий треугольника. Этот отрезок и прямая, на которой он лежит, соединяет точку во главе угла треугольника с серединой противолежащей стороны этой же фигуры. В равностороннем треугольнике медиана является также биссектрисой и высотой.

Биссектриса

Биссектриса представляет собой луч, который начинается в вершине угла и делит этот же угол пополам. Точки, лежащие на данном луче, равноудалены от сторон угла. Свойства биссектрисы хорошо помогают в решении задач, связанных с треугольниками.

Также как медиана и биссектриса, высота в треугольнике в первую очередь связывают вершину угла и противолежащую сторону. Это связь проистекает в следующем: высота – это перпендикуляр, проведенный из вершины, к прямой, которая содержит в себе противолежащую сторону.

Высота медиана и биссектриса треугольника определения и свойства

Высота медиана и биссектриса треугольника определения и свойства

Что такое медиана? биссектриса? высота? (определение)

    Попроси больше объяснений Следить Отметить нарушение

Ответы и объяснения

Медиана — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Биссектриса — это отрезок, делящий угол треугольника на две равные части.

Высота треугольника — это перпендикуляр, опущенный из любой вершины треугольника на противоположную сторону, или на ее продолжение.