Еще раз о замечательных точках треугольника

I. Точка пересечения высот (ортоцентр)

Теорема 1. Точка пересечения высот остроугольного треугольника ABC делит его высоту BB1 на отрезки, отношение которых, считая от вершины, равно

1) D BC1O – прямоугольный, и (рис. 1)

Замечание. Если один из углов тупой, то в (*) соответствующий косинус нужно взять по модулю.

II. Точка пересечения биссектрис (ицентр)

Теорема 2. Если Oточка пересечения биссектрис треугольника ABC, то

III. Расстояние от вершины треугольника до ортоцентра и ицентра

1. Расстояние от вершины до ортоцентра

Из 2) доказательства теоремы 1 следует, что

(для треугольников произвольных по виду) или

Пример 1. Найти расстояние от вершины B треугольника ABC до ортоцентра, если

По теореме косинусов Тогда

2. Расстояние от вершины до точки пересечения биссектрис треугольника (ицентра, центра вписанной окружности)

Из теоремы 2 следует, что

Так как то получим

Можно доказать, что AO 2 = bc – 4Rr.

Пример 2. В треугольнике ABC AB = 8 см, BC = 7 см, CA = 6 см. Найти расстояние от точки A до точки пересечения биссектрис.

Решение. Найдем биссектрису угла A: AA1 = 6 см.

IV. Расстояние между «замечательными» точками

1. Между центром вписанной окружности и точкой пересечения медиан (центр тяжести) – рис. 3.

Способ I (векторный). Пусть

1) По свойству медиан имеем

Тем самым получим

4) Так как скалярный квадрат вектора равен квадрату его длины 2bccos a = b 2 + c 2 – a 2 ,

и можно получить равенство

Одним из упрощений равенства будет

Пример 3. AC = 6, AB = 8, BC = 7. Найти расстояние между центром вписанной окружности и точкой пересечения медиан.

Решение. Из теоремы 2 следует, что

Так как скалярный квадрат вектора равен квадрату его длины и 2bccos a = 51, то

Способ II. 1) Найти медиану

2) Найти биссектрису

4) В D A1AA2 известны длины всех сторон, поэтому можно найти cos F A1AA2.

Решение. 1) Медиана

2. Между центром описанной окружности и точкой пересечения медиан (центр тяжести)

O – центр описанной окружности, OM – точка пересечения медиан, A1 и C1 – середины сторон соответственно AB и BC (рис. 4 и 5).

Тогда CK=a-0,5c cos b

4) F A = a , тогда F COB = 2 a , поэтому F COA— = a , OA1 = Rcos a .

6) В D OPOM по теореме Пифагора

Известно, что 2accos b = a 2 + c 2 – b 2 , 2bccos a = b 2 + c 2 – a 2 (теорема косинусов);

Пример 5. Стороны треугольника AB = 30, BC = 28, CA = 26. Найти расстояние между центром описанной около треугольника окружности и точкой пересечения медиан.

Решение. 1) Найдем площадь треугольника по формуле Герона,

7) В D OPOM по теореме Пифагора

3. Между центром описанной окружности и центром вписанной окружности

O1 – центр описанной, O2 – центр вписанной окружностей (рис. 6 и 7).

3) Так как из точек A, B, C проведены по две касательные к описанной окружности, то отрезки касательных, концами которых являются точки касания и вершины треугольника, равны и можно показать, что BK = pb.

5) В D O1PO2 (рис. 7) по теореме Пифагора имеем

Все, что нужно знать о треугольнике

При решении геометрических задач полезно следовать такому алгоритму. Во время чтения условия задачи необходимо

  • Сделать чертеж. Чертеж должен максимально соответствовать условию задачи, так его основная задача помочь найти ход решения
  • Нанести все данные из условия задачи на чертеж
  • Выписать все геометрические понятия, которые встречаются в задаче
  • Вспомнить все теоремы, которые относятся к этим понятию
  • Нанести на чертеж все соотношения между элементами геометрической фигуры, которые следуют из этих теорем

Например, если в задаче встречается слова биссектриса угла треугольника, нужно вспомнить определение и свойства биссектрисы и обозначить на чертеже равные или пропорциональные отрезки и углы.

В этой статье вы найдете основные свойства треугольника, которые необходимо знать для успешного решения задач.

ТРЕУГОЛЬНИК.

Площадь треугольника.

здесь — произвольная сторона треугольника, — высота, опущенная на эту сторону.

здесь и — произвольные стороны треугольника, — угол между этими сторонами:

3. Формула Герона:

— здесь — длины сторон треугольника, — полупериметр треугольника,

здесь — полупериметр треугольника, — радиус вписанной окружности.

Пусть — длины отрезков касательных.

Тогда формулу Герона можно записать в таком виде:

здесь — длины сторон треугольника, — радиус описанной окружности.

Если на стороне треугольника взята точка, которая делит эту сторону в отношении m:n, то отрезок, соединяющий эту точку с вершиной противолежащего угла делит треугольник на два треугольника, площади которых относятся как m:n:

Отношение площадей подобных треугольников равно квадрату коэффициента подобия.

Медиана треугольника

— это отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Медианы треугольника пересекаются в одной точке и делятся точкой пересечения в отношении 2:1, считая от вершины.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.

Радиус описанной окружности в два раза больше радиуса вписанной окружности: R=2r

Длина медианы произвольного треугольника вычисляется по формуле:

здесь — медиана, проведенная к стороне , — длины сторон треугольника.

Биссектриса треугольника

— это отрезок биссектрисы любого угла треугольника, соединяющий вершину этого угла с противоположной стороной.

Биссектриса треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам:

Биссектрисы треугольника пересекаются в одной точке, которая является центром вписанной окружности.

Все точки биссектрисы угла равноудалены от сторон угла.

Высота треугольника

— это отрезок перпендикуляра, опущенный из вершины треугольника на противоположную сторону, или ее продолжение. В тупоугольном треугольнике высота, проведенная из вершины острого угла лежит вне треугольника.

Высоты треугольника пересекаются в одной точке, которая называется ортоцентром треугольника.

Чтобы найти высоту треугольника, проведенную к стороне , нужно любым доступным способом найти его площадь, а затем воспользоваться формулой:

Центр окружности, описанной около треугольника, лежит в точке пересечения серединных перпендикуляров, проведенных к сторонам треугольника.

Радиус описанной окружности треугольника можно найти по таким формулам:

— здесь — длины сторон треугольника, — площадь треугольника.

где — длина стороны треугольника, — противолежащий угол. (Эта формула вытекает из теоремы синусов).

Неравенство треугольника

Каждая сторона треугольника меньше суммы и больше разности двух других.

Сумма длин любых двух сторон всегда больше длины третьей стороны:

Напротив большей стороны лежит больший угол; напротив большего угла лежит большая сторона:

Если , то и наоборот.

Теорема синусов:

стороны треугольника пропорциональны синусам противолежащих углов:

Теорема косинусов:

квадрат стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними:

Прямоугольный треугольник

это треугольник, один из углов которого равен 90°.

Сумма острых углов прямоугольного треугольника равна 90°.

Гипотенуза — это сторона, которая лежит против угла 90°. Гипотенуза является наибольшей стороной.

Теорема Пифагора:

квадрат гипотенузы равен сумме квадратов катетов:

Радиус окружности, вписанной в прямоугольный треугольник, равен

здесь — радиус вписанной окружности, — катеты, — гипотенуза:

Центр окружности, описанной около прямоугольного треугольника лежит в середине гипотенузы:

Медиана прямоугольного треугольника, проведенная к гипотенузе, равна половине гипотенузы.

Определение синуса, косинуса , тангенса и котангенса прямоугольного треугольника смотрите здесь.

Соотношение элементов в прямоугольном треугольнике:

Квадрат высоты прямоугольного треугольника, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу:

Квадрат катета равен произведению гипотенузы на проекцию катета на гипотенузу:

Катет, лежащий против угла равен половине гипотенузы:

Равнобедренный треугольник.

Биссектриса равнобедренного треугольника, проведенная к основанию является медианой и высотой.

В равнобедренном треугольнике углы при основании равны.

— угол при вершине.

и — боковые стороны,

и — углы при основании.

— высота, биссектриса и медиана.

Внимание! Высота, биссектриса и медиана, проведенные к боковой стороне не совпадают.

Правильный треугольник

(или равносторонний треугольник ) — это треугольник, все стороны и углы которого равны между собой.

Площадь правильного треугольника равна

где — длина стороны треугольника.

Центр окружности, вписанной в правильный треугольник, совпадает с центром окружности, описанной около правильного треугольника и лежит в точке пересечения медиан.

Точка пересечения медиан правильного треугольника делит медиану на два отрезка, меньший из которых равен радиусу вписанной окружности, а больший — радиусу описанной окружности.

Если один из углов равнобедренного треугольника равен 60°, то этот треугольник правильный.

Средняя линия треугольника

— это отрезок, соединяющий середины двух сторон.

На рисунке DE — средняя линия треугольника ABC.

Средняя линия треугольника параллельна третьей стороне и равна ее половине: DE||AC, AC=2DE

Внешний угол треугольника

— это угол, смежный какому либо углу треугольника.

Внешний угол треугольника равен сумме двух углов, не смежных с ним.

Тригонометрические функции внешнего угла:

Признаки равенства треугольников:

1 . Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

2 . Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

3 Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Важно: поскольку в прямоугольном треугольнике два угла заведомо равны, то для равенства двух прямоугольных треугольников требуется равенство всего двух элементов: двух сторон, или стороны и острого угла.

Признаки подобия треугольников:

1 . Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, и углы, заключенные между этими сторонами равны, то эти треугольники подобны.

2 . Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны.

3 . Если два угла одного треугольника равны двум углам другого треугольника, то эти треугольники подобны.

Важно: в подобных треугольниках сходственные стороны лежат против равных углов.

Теорема Менелая

Пусть прямая пересекает треугольник , причем – точка ее пересечения со стороной , – точка ее пересечения со стороной , и – точка ее пересечения с продолжением стороны . Тогда

Элементы треугольника. Высоты, медианы, биссектрисы

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки на отрезок , зато можем опустить его на прямую — то есть на продолжение стороны .

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Ты нашел то, что искал? Поделись с друзьями!

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Пусть биссектрисы треугольника (в котором угол равен ) пересекаются в точке .

Острый угол между биссектрисами на рисунке обозначен .

Угол смежный с углом , следовательно, .

Поскольку треугольник — прямоугольный, то .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Пусть — высота, проведенная из вершины прямого угла , — биссектриса угла .

Угол между высотой и биссектрисой — это угол .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Из треугольника (угол — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

4. В треугольнике угол равен , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Пусть в треугольнике угол равен , угол равен .

Из треугольника получим, что .

5. В треугольнике угол равен , угол равен . , и — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Найдем угол . Он равен .

Из треугольника найдем угол . Он равен .

6. В треугольнике , — медиана, угол равен , угол равен . Найдите угол . Ответ дайте в градусах.

Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.