Интегралы от тригонометрических функций. . Примеры решений

На данном уроке мы рассмотрим интегралы от тригонометрических функций, то есть начинкой интегралов у нас будут синусы, косинусы, тангенсы и котангенсы в различных комбинациях. Все примеры будут разобраны подробно, доступно и понятно даже для чайника.

Для успешного изучения интегралов от тригонометрических функций Вы должны хорошо ориентироваться в простейших интегралах, а также владеть некоторыми приемами интегрирования. Ознакомиться с этими материалами можно на лекциях Неопределенный интеграл. Примеры решений и Метод замены переменной в неопределенном интеграле.

Но сначала о том, каких интегралов в данной статье нет. Здесь не найдется интегралов вида , – косинус, синус, умноженный на какой-нибудь многочлен (реже что-нибудь с тангенсом или котангенсом). Такие интегралы интегрируются по частям, и для изучения метода посетите урок Интегрирование по частям. Примеры решений. Также здесь не найдется интегралов с «арками» – арктангенсом, арксинусом и др., они тоже чаще всего интегрируются по частям.

При нахождении интегралов от тригонометрических функций используется ряд методов:

В рамках урока я постараюсь подробно разобрать все перечисленные методы и привести примеры решения типовых интегралов. Следует отметить, что данное разделение по параграфам весьма условно, поскольку очень часто вышеперечисленные правила используются одновременно.

Использование тригонометрических формул

Найти неопределенный интеграл.

Сначала полное решение, потом комментарии.

(1) Мы видим, что в подынтегральном выражении находится произведение двух функций. К сожалению, в интегральном исчислении нет удобной формулы для интегрирования произведения: , поэтому приходится прибегать к различным ухищрениям. В данном случае мы прерываем решение значком и поясняем, что используется тригонометрическая формула. Данная формула превращает произведение в сумму.

(2) Используем свойства линейности неопределенного интеграла – интеграл от суммы равен сумме интегралов; константу можно (и нужно) вынести за знак интеграла.

! Справка: При работе с тригонометрическими функциями следует помнить, что:

Косинус – это четная функция, то есть , минус исчезает без всяких последствий. В рассматриваемом примере:

Синус – функция нечетная: – здесь минус, наоборот – не пропадает, а выносится.

(3) Под интегралами у нас сложные функции (косинусы не просто от , а от сложного аргумента). Это простейшие из сложных функций, интегралы от них удобнее найти методом подведения под знак дифференциала. Более подробно с данным приёмом можно ознакомиться на уроке Метод замены переменной в неопределенном интеграле.

Найти неопределенный интеграл.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Найти неопределенный интеграл.

Классика жанра для тех, кто тонет на зачёте. Как Вы, наверное, заметили, в таблице интегралов нет интеграла от тангенса и котангенса, но, тем не менее, такие интегралы найти можно.

(1) Используем тригонометрическую формулу

(2) Подводим функцию под знак дифференциала.

(3) Используем табличный интеграл .

Найти неопределенный интеграл.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Найти неопределенный интеграл.

Степени у нас будут потихоньку повышаться =).
Сначала решение:

(1) Используем формулу

(2) Используем основное тригонометрическое тождество , из которого следует, что .

(3) Почленно делим числитель на знаменатель.

(4) Используем свойство линейности неопределенного интеграла.

(5) Интегрируем с помощью таблицы.

Найти неопределенный интеграл.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Также существуют интегралы от тангенсов и котангенсов, которые находятся в более высоких степенях. Интеграл от тангенса в кубе рассмотрен на уроке Как вычислить площадь плоской фигуры? Интегралы от тангенса (котангенса) в четвертой и пятой степенях можно раздобыть на странице Сложные интегралы.

Понижение степени подынтегральной функции

Данный приём работает, когда подынтегральные функции нафаршированы синусами и косинусами в чётных степенях. Для понижения степени используют тригонометрические формулы , и , причем последняя формула чаще используется в обратном направлении: .

Найти неопределенный интеграл.

В принципе, ничего нового здесь нет, за исключением того, что мы применили формулу (понизив степень подынтегральной функции). Обратите внимание, что я сократил решение. По мере накопления опыта интеграл от можно находить устно, это экономит время и вполне допустимо при чистовом оформлении заданий. В данном случае целесообразно не расписывать и правило , сначала устно берем интеграл от 1, затем – от .

Найти неопределенный интеграл.

Это пример для самостоятельного решения, полное решение и ответ – в конце урока.

Таки обещанное повышение степени:

Найти неопределенный интеграл.

Сначала решение, потом комментарии:

(1) Готовим подынтегральную функцию для применения формулы .

(2) Собственно применяем формулу.

(3) Возводим знаменатель в квадрат и выносим константу за знак интеграла. Можно было поступить несколько иначе, но, на мой взгляд, так удобнее.

(4) Используем формулу

(5) В третьем слагаемом снова понижаем степень, но уже с помощью формулы .

(6) Приводим подобные слагаемые (здесь я почленно разделил и выполнил сложение ).

(7) Собственно берём интеграл, правило линейности и метод подведения функции под знак дифференциала выполняем устно.

(8) Причесываем ответ.

! В неопределенном интеграле нередко ответ можно записать несколькими способами

В только что рассмотренном примере окончательный ответ можно было записать иначе – раскрыть скобки и даже это сделать еще до интегрирования выражения, то есть вполне допустима следующая концовка примера:

Вполне возможно, что такой вариант даже удобнее, просто я объяснил так, как сам привык решать). Вот еще один характерный пример для самостоятельного решения:

Найти неопределенный интеграл.

Это пример решается двумя способами, и у Вас могут получиться два совершенно разных ответа (точнее говоря, они будут выглядеть совершенно по-разному, а с математической точки зрения являться эквивалентными). Скорее всего, Вы не увидите наиболее рациональный способ и помучаетесь с раскрытием скобок, использованием других тригонометрических формул. Наиболее эффективное решение приведено в конце урока.

Подытоживая параграф, сделаем вывод: любой интеграл вида , где и – чётные числа, решается методом понижения степени подынтегральной функции.
На практике мне встречались интегралы с 8 и 10 степенями, решать их ужасный гемор приходилось, понижая степень несколько раз, в результате чего получались длинные-длинные ответы.

Метод замены переменной

Как уже упоминалось в статье Метод замены переменной в неопределенном интеграле, основной предпосылкой для использования метода замены является тот факт, что в подынтегральном выражении есть некоторая функция и её производная :
(функции , не обязательно находятся в произведении)

Найти неопределенный интеграл.

Смотрим в таблицу производных и замечаем формулы , , то есть, в нашем подынтегральном выражении есть функция и её производная. Однако мы видим, что при дифференцировании косинус и синус взаимно превращаются друг в друга, и возникает вопрос: как выполнить замену переменной и что же обозначать за – синус или косинус?! Вопрос можно решить методом научного тыка: если мы неправильно выполним замену, то ничего хорошего не получится.

Общий ориентир: в похожих случаях за нужно обозначить функцию, которая находится в знаменателе.

Прерываем решение и проводим замену

В знаменателе у нас всё хорошо, всё зависит только от , теперь осталось выяснить, во что превратится .
Для этого находим дифференциал :

Или, если короче:
Из полученного равенства по правилу пропорции выражаем нужное нам выражение:

Готово. Напоминаю, что цель замены – упростить подынтегральное выражение, в данном случае всё свелось к интегрированию степенной функции по таблице.

Я не случайно так подробно расписал этот пример, это сделано в целях повторения и закрепления материалов урока Метод замены переменной в неопределенном интеграле.

А сейчас два примера для самостоятельного решения:

Найти неопределенный интеграл.

Найти неопределенный интеграл.

Полные решения и ответы в конце урока.

Найти неопределенный интеграл.

Здесь опять в подынтегральном выражении находятся синус с косинусом (функция с производной), но уже в произведении, и возникает дилемма – что же обозначать за , синус или косинус?

Можно попытаться провести замену методом научного тыка, и, если ничего не получится, то обозначить за другую функцию, но есть:

Общий ориентир: за нужно обозначить ту функцию, которая, образно говоря, находится в «неудобном положении».

Мы видим, что в данном примере студент косинус «мучается» от степени, а синус – свободно так сидит, сам по себе.

Поэтому проведем замену:

Если у кого остались трудности с алгоритмом замены переменной и нахождением дифференциала , то следует вернуться к уроку Метод замены переменной в неопределенном интеграле.

Найти неопределенный интеграл.

Анализируем подынтегральную функцию, что нужно обозначить за ?
Вспоминаем наши ориентиры:
1) Функция, скорее всего, находится в знаменателе;
2) Функция находится в «неудобном положении».

Кстати, эти ориентиры справедливы не только для тригонометрических функций.

Под оба критерия (особенно под второй) подходит синус, поэтому напрашивается замена . В принципе, замену можно уже проводить, но сначала неплохо было бы разобраться, а что делать с ? Во-первых, «отщипываем» один косинус:

мы резервируем под наш «будущий» дифференциал

А выражаем через синус с помощью основного тригонометрического тождества:

Вот теперь замена:

Общее правило: Если в подынтегральной функции одна из тригонометрических функций (синус или косинус) находится в нечетной степени, то нужно от нечетной степени «откусить» одну функцию, а за – обозначить другую функцию. Речь идет только об интегралах, где есть косинусы и синусы.

В рассмотренном примере в нечетной степени у нас находился косинус, поэтому мы отщипнули от степени один косинус, а за обозначили синус.

Найти неопределенный интеграл.

Степени идут на взлёт =).
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Универсальная тригонометрическая подстановка

Универсальная тригонометрическая подстановка – это частый случай метода замены переменной. Её можно попробовать применить, когда «не знаешь, что делать». Но на самом деле есть некоторые ориентиры для ее применения. Типичными интегралами, где нужно применить универсальную тригонометрическую подстановку, являются следующие интегралы: , , , и т. д.

Найти неопределенный интеграл.

Универсальная тригонометрическая подстановка в данном случае реализуется следующим способом. Проведем замену: . Я использую не букву , а букву , это не является каким-то правилом, просто опять же я так привык решать.

Здесь удобнее находить дифференциал , для этого из равенства , я выражаю :
Навешиваю на обе части арктангенс:

На практике можно не расписывать так подробно, а просто пользоваться готовым результатом:

! Выражение справедливо только в том случае, если под синусами и косинусами у нас просто «иксы», для интеграла (о котором мы еще поговорим) всё будет несколько иначе!

При замене синусы и косинусы у нас превращаются в следующие дроби:
, , эти равенства основаны на известных тригонометрических формулах: ,

Итак, чистовое оформление может быть таким:

Проведем универсальную тригонометрическую подстановку:

(1) Производим в исходный интеграл подстановку: , , .

(2) Приводим знаменатель к общему знаменателю.

(3) Избавляемся от четырехэтажности дроби, при этом у нас сокращается. Раскрываем скобки в знаменателе, двойку в числителе выносим за знак интеграла.

(4) Приводим подобные слагаемые в знаменателе.

(5) Интеграл решается методом выделения полного квадрата. Более подробно с этим методом можно ознакомиться на уроке Интегрирование некоторых дробей. Разложение является подготовкой для осуществления вышеуказанного приёма

(6) Выделяем полный квадрат и готовим интеграл для интегрирования.

(7) Интегрируем по табличной формуле .

(8) Проводим обратную замену, вспоминая, что .

Рассмотрим похожий интеграл: , нет, решать мы его не будем =), а просто поймем как проводить замену.

Здесь тоже проводится универсальная тригонометрическая подстановка: .
Обратите внимание, что аргумент под тангенсом должен быть в два раза меньше, чем под синусом и косинусом. Формулы , сохраняют статус-кво, а вот дифференциал будет немного другой (я не зря недавно так подробно его расписал):

Интеграл решается путем замены и т. д., всё точно так же, единственное отличие, дифференциал будет опять немного другой.

Найти неопределенный интеграл.

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

С помощью универсальной тригонометрической подстановки решаются и интегралы вроде такого:

Найти неопределенный интеграл.

Здесь перед применением универсальной тригонометрической подстановки необходимо понизить степени в знаменателе при помощи формул , . Попробуйте разобраться в данном примере самостоятельно, полное решение и ответ очень близко!

Применение универсальной тригонометрической подстановки часто приводит к длинным и трудоемким вычислениям. Поэтому на практике универсальной тригонометрической подстановки стараются избегать (если возможно). Для этого используют ряд методов и приемов, о которых можно прочитать в статье Сложные интегралы.

Решения и ответы:

Пример 2: Решение:

Пример 4: Решение:

Пример 6: Решение:

Пример 8: Решение:

Пример 10: Решение:

Пример 12: Решение:

Примечание: здесь можно было сделать замену , но гораздо выгоднее обозначить за весь знаменатель.

Пример 13: Решение:

Пример 16: Решение:

Пример 18: Решение:

Проведем универсальную тригонометрическую подстановку:

Пример 19: Решение:

Универсальная тригонометрическая подстановка:

Вы выполнили проверку? Может я и ошибся где 😉

Методы интегрирования тригонометрических функций

Основные тригонометрические формулы

Ниже приведены некоторые тригонометрические формулы, которые могут понадобится при интегрировании тригонометрических функций.

sin 2 a + cos 2 a = 1

Стандартные подстановки при интегрировании тригонометрических функций

Здесь мы рассмотрим стандартные подстановки, с помощью которых, в большинстве случаев, выполняется интегрирование тригонометрических функций.

Подстановка t = sin x

Преобразование выполняется по формулам:

cos x dx = dt ;
sin x = t ; cos 2 x = 1 – t 2 ;
;

Подстановка t = cos x

sin x dx = – dt ;
cos x = t ; sin 2 x = 1 – t 2 ;
;

Подстановка t = tg x

Подстановка t = ctg x

Подстановка t = tg (x/2)

Интегрирование обратных тригонометрических функций

Интегралы, содержащие обратные тригонометрические функции
arcsin φ , arctg φ , и т. д., где φ – некоторая алгебраическая функция от x , нередко интегрируются по частям, полагая u = arcsin φ , u = arctg φ , и т. д.

Стандартные методы интегрирования тригонометрических функций

Общий подход

Вначале, если это необходимо, подынтегральное выражение нужно преобразовать, чтобы тригонометрические функции зависели от одного аргумента, который совпадал бы с переменной интегрирования.

Например, если подынтегральное выражение зависит от sin( x+a ) и cos( x+b ) , то следует выполнить преобразование:
cos ( x+b ) = cos ( x+a – ( a–b ) ) = cos ( x+a ) cos ( b–a ) + sin ( x+a ) sin ( b–a ) .
После чего сделать замену z = x+a . В результате, тригонометрические функции будут зависеть только от переменной интегрирования z .

Когда тригонометрические функции зависят от одного аргумента, совпадающим с переменной интегрирования (допустим это z ), то есть подынтегральное выражение состоит только из функций типа sin z , cos z , tg z , ctg z , то нужно сделать подстановку
.
Такая подстановка приводит к интегрированию рациональных или иррациональных функций (если есть корни) и позволяет вычислить интеграл, если он интегрируется в элементарных функциях.

Однако, часто можно найти другие методы, которые позволяют вычислить интеграл более коротким способом, основываясь на специфике подынтегрального выражения. Ниже дано изложение основных таких методов.

Методы интегрирования рациональных функций от sin x и cos x

Рациональные функции от sin x и cos x – это функции, образованные из sin x , cos x и любых постоянных с помощью операций сложения, вычитания, умножения, деления и возведения в целочисленную степень. Они обозначаются так: R (sin x, cos x ) . Сюда также могут входить тангенсы и котангенсы, поскольку они образованы делением синуса на косинус и наоборот.
Интегралы от рациональных функций имеют вид:
.

Методы интегрировании рациональных тригонометрических функций следующие.
1) Подстановка всегда приводит к интегралу от рациональной дроби. Однако, в некоторых случаях, существуют подстановки (они представлены ниже), которые приводят к более коротким вычислениям.
2) Если R (sin x, cos x ) умножается на –1 при замене cos x → – cos x , то выполняется подстановка t = sin x .
3) Если R (sin x, cos x ) умножается на –1 при замене sin x → – sin x , то выполняется подстановка t = cos x .
4) Если R (sin x, cos x ) не меняется как при одновременной замене cos x → – cos x , и sin x → – sin x , то применяется подстановка t = tg x или t = ctg x .

Произведение степенных функций от cos x и sin x

Если m и n – рациональные числа, то одной из подстановок t = sin x или t = cos x интеграл сводится к интегралу от дифференциального бинома.

Если m и n – целые числа, то интегрирование выполняется с помощью формул приведения:

Интегралы от произведения многочлена и синуса или косинуса

Интегралы вида:
, ,
где P(x) – многочлен от x , интегрируются по частям. При этом получаются следующие формулы:

Интегралы от произведения многочлена, экспоненты и синуса или косинуса

Интегралы вида:
, ,
где P(x) – многочлен от x , интегрируются с помощью формулы Эйлера
e iax = cos ax + i sin ax (где i 2 = – 1 ).
Для этого методом, изложенном в предыдущем пункте, вычисляют интеграл
.
Выделив из результата действительную и мнимую часть, получают исходные интегралы.

Нестандартные методы интегрирования тригонометрических функций

Ниже приведены ряд нестандартных методов, которые позволяют выполнить или упростить интегрирование тригонометрических функций.

Зависимость от (a sin x + b cos x)

Если подынтегральное выражение зависит только от a sin x + b cos x , то полезно применить формулу:
,
где .

Разложение дроби из синусов и косинусов на более простые дроби

Рассмотрим интеграл
.
Наиболее простой способ интегрирования заключается в разложении дроби на более простые, применяя преобразование:
sin( a – b ) = sin( x + a – ( x + b ) ) = sin( x+a ) cos( x+b ) – cos( x+a ) sin( x+b )

Интегрирование дробей первой степени

При вычислении интеграла
,
удобно выделить целую часть дроби и производную знаменателя
a 1sin x + b 1cos x = A ( a sin x + b cos x ) + B ( a sin x + b cos x )′ .
Постоянные A и B находятся из сравнения левой и правой частей.

Использованная литература:
Н. М. Гюнтер, Р. О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 29-11-2014

Интегрирование тригонометрических функций: методы и примеры

Подынтегральное выражение можно преобразовать из произведения тригонометрических функций в сумму

Рассмотрим интегралы, в которых подынтегральная функция представляет собой произведение синусов и косинусов первой степени от икса, умноженного на разные множители, то есть интегралы вида

Воспользовавшись известными тригонометрическими формулами

(2)
(3)
(4)
можно преобразовать каждое из произведений в интегралах вида (31) в алгебраическую сумму и проинтегрировать по формулам

Решение. По формуле (2) при

Применяя далее формулу (5), получим

Решение. По формуле (3) при получаем следующее преобразование подынтегрального выражения:

Применяя далее формулу (6), получим

Решение. По формуле (4) при получаем следующее преобразование подынтегрального выражения:

Применяя формулу (6), получим

Интеграл произведения степеней синуса и косинуса одного и того же аргумента

Рассмотрим теперь интегралы от функций, представляющих собой произведение степеней синуса и косинуса одного и того же аргумента, т. е.

В частных случаях один из показателей (m или n) может равняться нулю.

При интегрировании таких функций используется то, что чётную степень косинуса можно выразить через синус, а дифференциал синуса равен cos x dx (или чётную степень синуса можно выразить через косинус, а дифференциал косинуса равен — sin x dx ) .

Следует различать два случая: 1) хотя бы один из показателей m и n нечётный; 2) оба показателя чётные.

Пусть имеет место первый случай, а именно показатель n = 2k + 1 — нечётный. Тогда, учитывая, что

Подынтегральное выражение представлено в таком виде, что одна его часть – функция только синуса, а другая – дифференциал синуса. Теперь с помощью замены переменной t = sin x решение сводится к интегрированию многочлена относительно t. Если же только степень m нечётна, то поступают аналогично, выделяя множитель sinx, выражая остальную часть подынтегральной функции через cos x и полагая t = cos x . Этот приём можно использовать и при интегрировании частного степеней синуса и косинуса, когда хотя бы один из показателей — нечётный. Всё дело в том, что частное степеней синуса и косинуса — это частный случай их произведения: когда тригонометрическая функция находится в знаменателе подынтегрального выражения, её степень — отрицательная. Но бывают и случаи частного тригонометрических функций, когда их степени — только чётные. О них — следующем абзаце.

Если же оба показателя m и n – чётные, то, используя тригонометрические формулы

понижают показатели степени синуса и косинуса, после чего получится интеграл того же типа, что и выше. Поэтому интегрирование следует продолжать по той же схеме. Если же один из чётных показателей — отрицательный, то есть рассматривается частное чётных степеней синуса и косинуса, то данная схема не годится. Тогда используется замена переменной в зависимости от того, как можно преобразовать подынтегральное выражение. Такой случай будет рассмотрен в следующем параграфе.

Пример 4. Найти интеграл от тригонометрической функции

Решение. Показатель степени косинуса – нечётный. Поэтому представим

и произведём замену переменной t = sin x (тогда dt = cos x dx ). Тогда получим

Возвращаясь к старой переменной, окончательно найдём

Пример 5. Найти интеграл от тригонометрической функции

Решение. Показатель степени косинуса, как и в предыдущем примере – нечётный, но больше. Представим

и произведём замену переменной t = sin x (тогда dt = cos x dx ). Тогда получим

Возвращаясь к старой переменной, получаем решение

Пример 6. Найти интеграл от тригонометрической функции

Решение. Показатели степени синуса и косинуса – чётные. Поэтому преобразуем подынтегральную функцию так:

Во втором интеграле произведём замену переменной, полагая t = sin2x . Тогда (1/2)dt = cos2x dx . Следовательно,

Найти интеграл от тригонометрической функции самостоятельно, а затем посмотреть решение

Пример 7. Найти интеграл от тригонометрической функции

Использование метода замены переменой

Метод замены переменной при интегировании тригонометрических функций можно применять в случаях, когда в подынтегральном выражении присутствует только синус или только косинус, произведение синуса и косинуса, в котором или синус или косинус — в первой степени, тангенс или котангенс, а также частное чётных степеней синуса и косинуса одного и того же аргумента. При этом можно производить перестановки не только sinx = t и sinx = t , но и tgx = t и ctgx = t .

Пример 8. Найти интеграл от тригонометрической функции

Решение. Произведём замену переменной: , тогда . Получившееся подынтегральное выражение легко интегрируется по таблице интегралов:

Возвращаясь к первоначальной переменной, окончательно получаем:

Пример 9. Найти интеграл от тригонометрической функции

Решение. Преобразуем тангенс в отношение синуса и косинуса:

Произведём замену переменной: , тогда . Получившееся подынтегральное выражение представляет собой табличный интеграл со знаком минус:

Возвращаясь к первоначальной переменной, окончательно получаем:

Пример 10. Найти интеграл от тригонометрической функции

Решение. Произведём замену переменной: , тогда .

Преобразуем подынтегральное выражение, чтобы применить тригонометрическое тождество :

Производим замену переменной, не забывая перед интегралом поставить знак минус (смотрите выше, чему равно dt ). Далее раскладываем подынтегральное выражение на множители и интегрируем по таблице:

Возвращаясь к первоначальной переменной, окончательно получаем:

Найти интеграл от тригонометрической функции самостоятельно, а затем посмотреть решение

Пример 11. Найти интеграл от тригонометрической функции

Универсальная тригонометрическая подстановка

Универсальную тригонометрическую подстановку можно применять в случаях, когда подынтегральное выражение не подпадает под случаи, разобранные в предыдущих параграфах. В основном, когда синус или косинус (или и то, и другое) находятся в знаменателе дроби. Доказано, что синус и косинус можно заменить другим выражением, содержащим тангенс половины исходного угла следующим образом:

Но заметим, что универсальная тригонометрическая подстановка часто влечёт за собой довольно сложные алгебраические преобразования, поэтому её лучше применять, когда никакой другой метод не работает. Разберём примеры, когда вместе с универсальной тригонометрической подстановкой используются подведение под знак дифференциала и метод неопределённых коэффициентов.

Пример 12. Найти интеграл от тригонометрической функции

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда
.

Дроби в числителе и знаменателе умножаем на , а двойку выносим и ставим перед знаком интеграла. Тогда

Чтобы в результате преобразований прийти к табличному интегралу, попытаемся получить в знаменателе полный квадрат. Для этого умножим числитель и знаменатель подынтегрального выражения на 2. Применяем интегрирование подведением под знак дифференциала. Получим

К полученному результату преобразований можем теперь применить табличный интеграл 21. В результате получаем окончательное решение:

Пример 13. Найти интеграл от тригонометрической функции

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда
.

Дроби в числителе и знаменателе умножаем на , а двойку выносим и ставим перед знаком интеграла. Тогда

Чтобы в результате преобразований прийти к табличному интегралу, попытаемся получить в знаменателе полный квадрат. Для этого умножим числитель и знаменатель подынтегрального выражения на 3. Применяем интегрирование подведением под знак дифференциала. Получим

К полученному результату преобразований можем теперь применить табличный интеграл 21. В результате получаем окончательное решение:

Пример 14. Найти интеграл от тригонометрической функции

Решение. Решение. Воспользуемся универсальной тригонометрической подстановкой. Тогда

Используем метод неопределённых коэффициентов. Получим следующее подынтегральное выражение:

Чтобы найти коэффициенты, решим систему уравнений:

Используем подведение под знак дифференциала:

К последнему слагаемому применяем замену переменной , тогда . Получаем:

Преобразуем и вернём на место первоначальную переменную и окончательно получим решение: