Изучаем математику вместе!

Основные формулы тригонометрии

Содержание

1. Определения синуса, косинуса, тангенса и котангенса угла.

Синус угла (обозначается ) – ордината точки , полученной поворотом точки вокруг начала координат на угол .

Косинус угла (обозначается ) – абсцисса точки , полученной поворотом точки вокруг начала координат на угол .

Тангенс угла (обозначается ) – отношение синуса угла к его косинусу, т. е.

Котангенс угла (обозначается ) – отношение косинуса угла к его синусу, т. е.

2. Основное тригонометрическое тождество:

3. Зависимость между синусом, косинусом, тангенсом и котангенсом:

4. Чётность, нечётность и периодичность тригонометрических функций.

Косинус – чётная функция, а синус, тангенс и котангенс – нечётные функции аргумента :

Синус и косинус – периодические с периодом 2\pi функции, а тангенс и котангенс – периодические с периодом функции:

Число является наименьшим положительным периодом синуса и косинуса, а число – наименьшим положительным периодом тангенса и котангенса.
Для любого целого справедливы равенства

7. Формулы понижения степени:

9. Формулы суммы и разности синусов:

10. Формулы суммы и разности косинусов:

11. Формулы суммы и разности тангенсов:

12. Преобразование произведения синусов и косинусов в сумму (разность):

13. Выражение синуса и косинуса через тангенс половинного аргумента:

Синус, косинус, тангенс и котангенс угла и числа. Начальный уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Синус, косинус, тангенс, котангенс

Понятия синуса ( ), косинуса ( ), тангенса ( ), котангенса ( ) неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен .

То есть на рисунке выше изображён угол , равный , то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол , равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги ). Таким образом, длина дуги вычисляется по формуле:

, где — центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен . То есть, соотнеся величину в градусах и радианах, получаем, что . Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют ? Всё верно !

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы:

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза — это сторона, которая лежит напротив прямого угла (в нашем примере это сторона ); катеты – это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла , то катет – это прилежащий катет, а катет — противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла – это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике .

Косинус угла – это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике .

Тангенс угла – это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике .

Котангенс угла – это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике .

Эти определения необходимо запомнить! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе. А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла . По определению, из треугольника : , но ведь мы можем вычислить косинус угла и из треугольника : . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника , изображённого ниже на рисунке, найдём .

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла .

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным . Такая окружность называется единичной. Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус ).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси . А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник . Он прямоугольный, так как является перпендикуляром к оси .

Чему равен из треугольника ? Всё верно . Кроме того, нам ведь известно, что – это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника ? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка , принадлежащая окружности? Ну что, никак? А если сообразить, что и — это просто числа? Какой координате соответствует ? Ну, конечно, координате ! А какой координате соответствует ? Всё верно, координате ! Таким образом, точка .

А чему тогда равны и ? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что , а .

А что, если угол будет больше ? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник : угол (как прилежащий к углу ). Чему равно значение синуса, косинуса, тангенса и котангенса для угла ? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате ; значение косинуса угла – координате ; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора – вдоль положительного направления оси . До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы, а при вращении по часовой стрелке – отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или . А можно повернуть радиус-вектор на или на ? Ну конечно, можно! В первом случае, , таким образом, радиус-вектор совершит один полный оборот и остановится в положении или .

Во втором случае, , то есть радиус-вектор совершит три полных оборота и остановится в положении или .

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где – любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол . Это же изображение соответствует углу и т. д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где – любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами , следовательно:

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами , соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Что такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Синус, косинус и тангенс острого угла прямоугольного треугольника.

Приветствую Вас дорогие учащиеся.

Сейчас рассмотрим что же такое синус, косинус, тангенс и котангенс в прямоугольном треугольнике?

Это тема не сложная, главное это запомнить правила. И так начнем:

Вспомним, что такое прямоугольный треугольник?

Прямоугольным треугольником, называется треугольник у которого один из углов прямой (составляет 90 градусов). Две стороны которые прилежат к прямому углу, называются катетами, а сторона лежащая напротив прямого угла, называется гипотенузой.

Синус (sin(a)) — это отношение противолежащего катета к гипотенузе;

Косинус (cos(a)) — это отношение прилежащего катета к гипотенузе;

Тангенс (tg(a)) — это отношение противолежащего катета к прилежащему катету;
Другое (равносильное) определение: тангенсом острого угла называется отношение синуса угла к его косинусу;

Котангенс (ctg(a)) — это отношение прилежащего катета к противолежащему.
Другое (равносильное) определение: котангенсом острого угла называется отношение косинуса угла к его синусу;

Пусть дан прямоугольный треугольник ABC с прямым углом C.

Найти sin(a); cos(a); tg(a); ctg(a) Отношение сторон в прямоугольном треугольнике

Аналогично рассуждаем относительно угла B.

Найти sin(b); cos(b); tg(b); ctg(b) Отношение сторон в прямоугольном треугольнике

Пример:

Найти тангенс угла С (tg(C)) треугольника ABC.

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ