Как находить площадь поверхности многогранника

Задание 8_1. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности многогранника можно вычислить как сумму площадей всех его граней. Причем площади передней и задней граней, равны

и вся площадь поверхности равна

Задание 8_2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Найдем площадь поверхности как площадь поверхности прямоугольного параллелепипеда со сторонами 3, 3, 5 и вычтем площади двух граней 1х1 прямоугольного параллелепипеда со сторонами 1, 1 и 3 (см. рисунок).

Площадь поверхности большого параллелепипеда, равна

Площади двух граней 1х1 малого параллелепипеда, равны:

и площадь поверхности фигуры

Задание 8_3. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Из рисунка видно, что площадь поверхности фигуры будет меньше площади прямоугольного параллелепипеда со сторонами 3, 4 и 5 на площади двух квадратов, размером 1х1, имеем:

Задание 8_4. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Можно заметить, что площадь поверхности данной фигуры будет в точности совпадать с площадью поверхности прямоугольного параллелепипеда со сторонами 5, 3 и 5 и равна

Замечание. Не путайте вычисление объема фигуры и площади его поверхности!

Задание 8_5. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности данной фигуры равна площади поверхности прямоугольного параллелепипеда со сторонами 3, 5 и 4, и равна

Замечание. Не путайте вычисление объема фигуры и площади его поверхности!

Задание 8_6. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности данной фигуры можно вычислить как площадь поверхности прямоугольного параллелепипеда со сторонами 4, 4 и 6 плюс две грани 1х4 площадью 4 (см. рисунок) и минус две грани площадью 2х1 (они вычитаются из оснований). Таким образом, площадь фигуры равна

Задание 8_7. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площади нижней и верхней граней равны , площади боковых граней можно вычислить как , площади передней и задней граней соответственно и еще нужно учесть две площади внутренней нижней и верхней граней . Таким образом, вся площадь поверхности фигуры равна

Задание 8_8. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности фигуры можно вычислить как площадь поверхности прямоугольного параллелепипеда со сторонами 4, 3 и 2, минус четыре площади боковых квадратов, размером 1х1. Имеем:

Задание 8_9. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

На рисунке изображен прямоугольный параллелепипед с вырезом. Площадь поверхности такой фигуры будет равна площади поверхности всего параллелепипеда со сторонами 5, 7 и 1 минус две площади фронтального выреза площадью 2х1=2 и плюс четыре площади внутренних сторон выреза размерами 1х1 и 2х1. Таким образом, вся площадь поверхности многогранника равна

Задание 8_10. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности многогранника можно найти как сумму площадей двух прямоугольных параллелепипедов со сторонами 5, 4, 3 и 3, 2, 3 минус две площади основания нижнего параллелепипеда площадью 2х3 (две площади, т. к. она будет дважды учтена в большом и малом параллелепипедах). Таким образом, получаем:

Задание 8_11. Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые.

Найдем площадь поверхности фигуры как площадь прямоугольного параллелепипеда со сторонами 2, 2, 1 и вычтем две площади граней 1х1 во фронтальных плоскостях (передней и задней), получим:

Задание 8_12. Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов.

Площадь поверхности данной фигуры можно найти как сумму площадей поверхности 6 кубов минус площадь поверхности одного куба (тот что внутри и эти грани не входят в площадь поверхности), получаем:

Задание 8_13. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Найдем площадь поверхности этого многогранника как сумму площадей поверхности большого (6х6х2) и малого (3х3х4) прямоугольных параллелепипедов и вычтем дважды площадь поверхности соприкосновения граней этих параллелепипедов, которая имеет размер 3х4, получим:

Задание 8_14. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Площадь поверхности этого многогранника можно найти как сумму площадей поверхности каждого из трех параллелепипедов размерами 2х5х6, 2х5х3 и 2х3х2 минус удвоенные площади соприкосновения этих параллелепипедов, то есть минус удвоенные площади двух граней размерами 3х5 и 2х3 соответственно. В результате получаем площадь поверхности фигуры:

Задание 8_15. Через среднюю линию основания треугольной призмы, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности призмы, если площадь боковой поверхности отсеченной треугольной призмы равна 37.

Так как плоскость сечения проведена через среднюю линию, то она делит боковую плоскость пополам. Следовательно, площадь боковой поверхности большей призмы в 2 раза больше площадь боковой поверхности малой призмы и равна 74.

Площадь поверхности многогранника. Задание 8

Задание 8 (№ 25641) из Открытого банка заданий для подготовки к ЕГЭ по математике.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые)

Решение. Площадь поверхности многогранника равна сумме площадей всех его граней. Так как все грани этого многогранника — прямоугольники, то для нахождения площади каждой грани мы используем формулу площади прямоугольника:

S=ab, где a и b — длины двух смежных сторон прямоугольника.

Обозначим вершины многогранника:

1.Найдем сначала площадь боковой поверхности. Для этого, чтобы не пропустить ни одной грани, обойдем наш многогранник по часовой стрелке, и запишем площадь каждой грани:

2. Найдем площадь верхней грани. Для этого из площади прямоугольника ABCD вычтем площадь прямоугольника MLKE:

3. Площадь нижней грани равна площади верхней грани и равна 22.

4. Сложим получившиеся площади: 88+22+22=132.

Площадь поверхности многогранника

Площадь поверхности многогранника. В данной рубрике в опубликованных статьях » Общий обзор. Формулы стереометрии » и » Что ещё необходимо знать для решения по стереометрии » мы уже рассмотрели теоретические моменты, которые необходимы для решения.

В составе ЕГЭ по математике имеется целый ряд задач на определение площади поверхности и объема составных многогранников. Это, наверное, одни из самых простых задач по стереометрии. НО! Имеется нюанс. Не смотря на то, что сами вычисления просты, ошибку при решении такой задачи допустить очень легко.

В чём же дело? Далеко не все обладают хорошим пространственным мышлением, чтобы сразу увидеть все грани и параллелепипеды из которых «состоят» многогранники. Даже если вы умеете делать это очень хорошо, можете мысленно сделать такую разбивку, всё-таки следует не торопиться и воспользоваться рекомендациями из этой статьи.

Кстати, пока работал над данным материалом, нашёл ошибку в одной из задач на сайте. Нужна внимательность и ещё раз внимательность, вот так.

Итак, если стоит вопрос о площади поверхности, то на листе в клетку постройте все грани многогранника, обозначьте размеры. Далее внимательно вычисляйте сумму площадей всех полученных граней. Если будете предельно внимательны при построении и вычислении, то ошибка будет исключена.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Используем оговоренный способ. Он нагляден. На листе в клетку строим все элементы (грани) в масштабе. Если длины рёбер будут большими, то просто подпишите их.

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Ещё задачи 25881 , 77155 , 77156 . В них приведены решения другим способом (без построения), постарайтесь разобраться — что откуда взялось. Также решите уже представленным способом.

Если требуется найти объём составного многогранника. Разбиваем многогранник на составляющие его параллелепипеды, записываем внимательно длины их рёбер и вычисляем.

Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

Объем многогранника, изображенного на рисунке равен сумме объёмов двух многогранников с рёбрами 6,2,4 и 4,2,2

Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).

Найдите объем пространственного креста, изображенного на рисунке и составленного из единичных кубов.

Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Казалось бы, данные задачи можно вообще не рассматривать, они же просты и понятны. Но в их решении важна практика. Повторюсь, что ошибиться очень легко, попрактикуйтесь с подобными задачами и вы убедитесь.

В отк рытом банке задач много примеров аналогичных задач (смотрите здесь и здесь ). Договоритесь с одноклассниками решить одни и те же задачи, затем сверьтесь.

Мы продолжим рассматривать задачи данной части, не пропустите! Успехов вам.