Как рассчитать площадь прямоугольника

На данной странице калькулятор поможет рассчитать площадь прямоугольника онлайн. Для расчета задайте длину сторон или длины диагоналей и угол между ними.

Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).

Через стороны

Формула для нахождения площади прямоугольника через стороны:

Через диагонали и угол между ними

Формула для нахождения площади прямоугольника через диагонали и угол между ними:

Площадь прямоугольника

Прямоугольник – это параллелограмм, у которого все углы равны 90°, а противоположные стороны попарно параллельны и равны.

  • Стороны прямоугольника являются его высотами;
  • Длины диагоналей равны между собой ;
  • Точка пересечения диагоналей делит их пополам;

Длина неизвестной стороны или диагонали прямоугольника вычисляется по формуле площади прямоугольного треугольника или по теореме Пифагора. Площадь прямоугольника можно найти двумя способами – по произведению его сторон или по формуле площади прямоугольника через диагональ. Первая и самая простая формула выглядит так:

Площадь прямоугольника через диагонали

Иногда требуется применить формулу площади прямоугольника через диагонали. Для нее потребуется не только узнать длину диагоналей, но и угол между ними:

Итак, пример расчета площади прямоугольника через диагональ показал нам, что найти площадь таким образом, если задан угол, довольно просто.
Рассмотрим еще одну интересную задачку, которая поможет нам немного размять мозги.

Как найти площадь прямоугольника через диагональ (формула)?

Одной диагонали недостаточно, нужна еще одна сторона или отношение сторон. Например, при отношении сторон 1 к 1, то есть квадрате, площадь будет равна половине диагонали в квадрате. Все остальные прямоугольники с такой же диагональю будут иметь меньшую площадь.

Если неизвестны стороны, а известен угол между диагональю и одной из сторон, то можно с помощью теоремы синусов вычислить стороны. Скажем угол равен 30 градусов, значит противоположная сторона равна половине диагонали, а вторая сторона равна примерно 0,86 диагонали и площадь будет равна 0,43 квадрата диагонали, то есть произведению синусов углов на диагональ в квадрате. S=sinA*sinB*D*D, где S — площадь прямоугольника, А — угол между диагональю и одной стороной, В — угол между диагональю и другой стороной, D — диагональ.

Прежде всего давайте вспомним свойства любого прямоугольника:

во-первых, он имеет две диагонали, и они будут между собой равны.

во-вторых, диагонали пересекаются и делятся между собой пополам.

По диагонали можно вычислить площадь прямоугольника. Только нужно знать следующие данные: длина диагонали и угол, который образуется между ними.

Площадь вычисляется по следующей формуле:

Площадь прямоугольника через диагональ

В прямоугольнике диагонали равны между собой. Если известен угол α между диагоналями (длина диагоналей равна d), то площадь прямоугольника можно найти по формуле:

Sпр = 0,5 * d² * sinα.

Например, если угол между диагоналями равен 30°, а диагонали равны 5 см, то площадь будет равна:

Sпр = 0,5 * 25 * 0,5 = 6,25 см.

Если неизвестен угол между диагоналями, то будет нужно найти стороны прямоугольника. А затем воспользоваться формулой:

Как известно, диагональ прямоугольника делит его на 2 равных прямоугольных треугольника. Поэтому задача сводится к тому, чтобы найти катеты прямоугольного треугольника через гипотенузу.

Кроме длины диагонали требуется знать либо одну из сторон прямоугольника, либо отношение сторон, либо угол между стороной и диагональю.

1) Если известна диагональ (пусть она будет равна d) и одна из сторон (например, b), то выражаем неизвестную сторону из формулы:

a² + b² = c² -> a = √(c² — b²).

Sпр = a * b = √(c² — b²) * b.

Например, если диагональ d = 5 см и сторона b = 3 см, то a = √(25 — 9) = √16 = 4 см.

Площадь прямоугольника равна 3 * 4 = 12 см.

2) Если известно отношение сторон, то задача сводится к нахождению обеих сторон через составление уравнения.

Например, если стороны относятся как 2:3, а диагональ равна 13 см, то можно составить уравнение:

(2x)² + (3x)² = 4x² + 9x² = 169.

Значит, a = 2√13 см и b = 3√13 см.

Площадь прямоугольника равна 2√13 * 3√13 = 6 * 13 = 78 см.

3) Если известна диагональ и один из прилежащих к диагонали углов, то нужно воспользоваться формулами:

a = d * cosβ (β — прилежащий угол) и b = d * sinα (α — противолежащий угол).

Например, d = 10 см и угол α = 30°.

a = 10 * cos30° = 10√3 / 3.

b = 10 * sin30° = 5 см.

Площадь прямоугольника равна 5 * (10√3 / 3) ≈ 28,33 см.