Как решить уравнение с неизвестным в дроби

Иногда линейные уравнения принимают вид, когда неизвестное оказывается в числителе одной или нескольких дробей. Как, например, в уравнении ниже.

В таких случаях подобные уравнения можно решить двумя способами.

I способ решения
Сведение уравнения к пропорции

При решении уравнений способом пропорции необходимо выполнить следующие действия:

  • привести все дроби к общему знаменателю и сложить их как алгебраические дроби (в левой и правой части должно остаться только по одной дроби);
  • полученное уравнение решить по правилу пропорции.

Итак, вернемся к нашему уравнению. В левой части у нас и так стоит только одна дробь, поэтому в ней не нужны никакие преобразования.

Будем работать с правой частью уравнения. Упростим правую часть уравнения так, чтобы там осталась только одна дробь. Для этого вспомним правила сложения числа с алгебраической дробью.

Теперь используем правило пропорции и решим уравнение до конца.

II способ решения
Сведение к линейному уравнению без дробей

Рассмотрим уравнение выше еще раз и решим его другим способом.

Мы видим, что в уравнении присутствуют две дроби «

Наша задача сделать так, чтобы в уравнении не осталось ни одной дроби.

Другими словами, необходимо свести уравнение к обычному линейному уравнению без неизвестного в дроби.

Чтобы избавиться от дробей в уравнении нужно:

  • найти число, которое без остатка будет делиться на каждый из знаменателей;
  • умножить каждый член уравнения на это число.

Давайте зададим себе вопрос: «Какое число без остатка делится на каждый из знаменателей дробей, то есть и на « 5 », и на « 9 » ?». Таким ближайшим наименьшим числом будет число « 45 ».

Умножим каждый член уравнения на « 45 ».

При умножении уравнения на число нужно каждый член уравнения умножить на это число.

Уравнения с десятичными дробями

Линейные уравнения с десятичными дробями можно решать так же, как и остальные линейные уравнения.

Однако, удобнее сначала уравнение упростить, избавившись от десятичных дробей.

Для начала рассмотрим оба способа решения и сравним их.

Раскрываем скобки. Так как перед скобками стоит множитель, умножаем этот множитель на каждое слагаемое в скобках:

Это — линейное уравнение. Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:

Обе части уравнения делим на число, стоящее перед иксом:

Чтобы перевести десятичные дроби в целые числа, умножим обе части уравнения почленно на 10:

(При умножении произведения 2,4(6-3х) на 10 применяем сочетательное свойство умножения, то есть на 10 мы умножим только первый множитель, 2,4).

Получили линейное уравнение, которое не содержит десятичных дробей. Решаем его:

На мой взгляд, линейные уравнения с десятичными дробями удобнее решать, переводя их в уравнения с целыми числами.

Чтобы избавиться от десятичных дробей, обе части уравнения умножаем на 10. При этом в произведении 5(0,1х-0,5) на 10 умножаем второй множитель, то есть выражение в скобках, а в произведении 0,4(х-3) — первый, то есть 0,4:

Далее — решаем обычное линейное уравнение:

Обе части уравнения умножаем на 100. При этом в произведении 1,2(2,3х-3,1), надо первый множитель 1,2 умножить на 10 и второй множитель (2,3х-3,1) умножить на 10:

Как решать десятичное уравнение

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Линейное уравнение с десятичными дробями решается точно так же, как и множество других уравнений, однако их решение нужно начинать с сокращения уравнения и избавления от десятичных дробей.

Допустим, дано уравнение следующего вида:

\[2,4(6 — 3x) + 4,3 = 1,7 — 5,2x\]

Данное уравнение можно решить двумя разными способами.

Решение начинаем с упрощения уравнения с помощью открытия скобок, а поскольку перед скобками у нас стоит число, то умножаем это число на каждый член в скобках:

\[14,4 — 7,2x + 4,3 = 1,7 — 5,2x\]

Сейчас наше уравнение имеет линейный вид, благодаря чему мы производим перенос неизвестных в одну сторону, целый числе в другую:

\[ — 7,2x + 5,2x = 1,7 — 14,4 — 4,3\]

Делим 2 части на число перед \[x :\]

В этом способе умножим левую и правую части на 10:

\[2,4(6 — 3x) + 4,3 = 1,7 — 5,2x\]

\[24(6 — 3x) + 43 = 17 — 52x\]

Это линейное уравнение, которое решается по аналогии с 1 способом:

\[144 — 72x + 43 = 17 — 52x\]

\[ — 72x + 52x = 17 — 144 — 43\]

Где можно решить десятичные уравнения онлайн?

Решить уравнение вы можете на нашем сайте pocketteacher. ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто вdести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте: pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!