Наибольшее и наименьшее значение функции

С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования. Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Следует отметить, что наибольшее и наименьшее значение функции обычно ищется на некотором интервале X , который является или всей областью определения функции или частью области определения. Сам интервал X может быть отрезком , открытым интервалом , бесконечным промежутком .

В этой статье мы будем говорить о нахождении наибольшего и наименьшего значений явно заданной функции одной переменной y=f(x) .

Навигация по странице.

Наибольшее и наименьшее значение функции — определения, иллюстрации.

Кратко остановимся на основных определениях.

Наибольшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Наименьшим значением функции y=f(x) на промежутке X называют такое значение , что для любого справедливо неравенство .

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе .

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:»Всегда ли можно определить наибольшее (наименьшее) значение функции»? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

На первом рисунке функция принимает наибольшее ( max y ) и наименьшее ( min y ) значения в стационарных точках, находящихся внутри отрезка [-6;6] .

Рассмотрим случай, изображенный на втором рисунке. Изменим отрезок на [1;6] . В этом примере наименьшее значение функции достигается в стационарной точке, а наибольшее — в точке с абсциссой, соответствующей правой границе интервала.

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале

На четвертом рисунке функция принимает наибольшее ( max y ) и наименьшее ( min y ) значения в стационарных точках, находящихся внутри открытого интервала (-6;6) .

На интервале [1;6) наименьшее значение функции достигается в стационарной точке, а про наибольшее значение мы ничего сказать не можем. Если бы точка x=6 была частью интервала, тогда при этом значении функция принимала бы наибольшее значение. Этот пример изображен на рисунке №5.

На рисунке №6 наименьшее значение функции достигается в правой границе интервала (-3;2] , о наибольшем значении никаких выводов сделать нельзя.

В примере, представленном на седьмом рисунке, функция принимает наибольшее значение ( max y ) в стационарной точке с абсциссой x=1 , а наименьшее значение ( min y ) достигается на правой границе интервала. На минус бесконечности значения функции асимптотически приближаются к y=3 .

На интервале функция не достигает ни наименьшего, ни наибольшего значения. При стремлении к x=2 справа значения функции стремятся к минус бесконечности (прямая x=2 является вертикальной асимптотой), а при стремлении абсциссы к плюс бесконечности, значения функции асимптотически приближаются к y=3 . Графическая иллюстрация этого примера приведена на рисунке №8.

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на отрезке [a;b] .

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

  1. Находим область определения функции и проверяем, содержится ли в ней весь отрезок [a;b] .
  2. Находим все точки, в которых не существует первая производная и которые содержатся в отрезке [a;b] (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.
  3. Определяем все стационарные точки, попадающие в отрезок [a;b] . Для этого, находим производную функции, приравниваем ее к нулю, решаем полученное уравнение и выбираем подходящие корни. Если стационарных точек нет или ни одна из них не попадает в отрезок, то переходим к следующему пункту.
  4. Вычисляем значения функции в отобранных стационарных точках (если такие имеются), в точках, в которых не существует первая производная (если такие имеются), а также при x=a и x=b .
  5. Из полученных значений функции выбираем наибольшее и наименьшее — они и будут искомыми наибольшим и наименьшим значениями функции соответственно.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Найти наибольшее и наименьшее значение функции

  • на отрезке [1;4] ;
  • на отрезке [-4;-1] .

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть . Оба отрезка попадают в область определения.

Очевидно, производная функции существует во всех точках отрезков [1;4] и [-4;-1] .

Стационарные точки определим из уравнения . Единственным действительным корнем является x=2 . Эта стационарная точка попадает в первый отрезок [1;4] .

Для первого случая вычисляем значения функции на концах отрезка и в стационарной точке, то есть при x=1 , x=2 и x=4 :

Следовательно, наибольшее значение функции достигается при x=1 , а наименьшее значение – при x=2 .

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):

Алгоритм нахождения наибольшего и наименьшего значения непрерывной функции на открытом или бесконечном интервале X .

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

Проверяем, является ли интервал X подмножеством области определения функции.

Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

Определяем все стационарные точки, попадающие в промежуток X . Для этого приравниваем производную функции к нулю, решаем полученное уравнение и выбираем подходящие корни.

Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

Дальнейшие действия зависят от интервала X .

Если интервал X имеет вид:

  • [a;b) , то вычисляем значение функции в точке x=a и односторонний предел ;
  • (a;b] , то вычисляем значение функции в точке x=b и односторонний предел ;
  • (a;b) , то вычисляем односторонние пределы ;
  • , то вычисляем значение функции в точке x=a и предел на плюс бесконечности ;
  • , то вычисляем односторонний предел и предел на плюс бесконечности ;
  • , то вычисляем значение функции в точке x=b и предел на минус бесконечности ;
  • , то вычисляем односторонний предел и предел на минус бесконечности ;
  • , то вычисляем пределы на плюс и минус бесконечности .

Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

Найти наибольшее и наименьшее значение функции на интервалах:

  1. (-3;1]
  2. (-3;2)
  3. [1;2)

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Очевидно, производная существует на всей области определения функции.

Найдем стационарные точки. Производная обращается в ноль при . Эта стационарная точка попадает в интервалы (-3;1] и (-3;2) .

Для первого промежутка вычисляем значение функции при x=-4 и предел на минус бесконечности:

Так как , то , а о наименьшем значении функции выводов сделать нельзя. Можно лишь утверждать, что значения функции ограничены снизу значением -1 (на минус бесконечности значения функции асимптотически приближаются к прямой y=-1 ).

Второй интервал интересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:

Следовательно, значения функции находятся в интервале при x из промежутка .

Для третьего промежутка (-3;1] вычислим значение функции в стационарной точке и при x=1 , а также односторонний предел, при стремлении аргумента к -3 справа:

Следовательно, наибольшее значение на этом интервале функция принимает в стационарной точке , наименьшее значение функции мы вычислить не можем, но значения функции ограничены снизу величиной -4 .

Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:

Поэтому , наименьшее значение определить нет возможности, значения функции ограничены снизу величиной -4 .

Результаты предыдущих двух пунктов позволяют утверждать, что на интервале [1;2) наибольшее значение функция принимает при x=1 , наименьшее значение найти нельзя, значения функции ограничены снизу величиной -4 .

На промежутке функция не достигает ни наибольшего, ни наименьшего значения.

То есть, на этом интервале функция принимает значения из промежутка .

Вычислив значение функции при x=4 , можно утверждать, что и на плюс бесконечности функция асимптотически приближается к прямой y=-1 .

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Как найти наибольшее и наименьшее значения функции на отрезке. Задание 12.

Как найти наибольшее и наименьшее значения функции на отрезке?

Для этого мы следуем известному алгоритму:

1 . Находим ОДЗ функции.

2 . Находим производную функции

3 . Приравниваем производную к нулю

4 . Находим промежутки, на которых производная сохраняет знак, и по ним определяем промежутки возрастания и убывания функции:

Если на промежутке I производная функции 0″ title=»f^(x)>0″/> , то функция возрастает на этом промежутке.

Если на промежутке I производная функции , то функция убывает на этом промежутке.

5 . Находим точки максимума и минимума функции.

В точке максимума функции производная меняет знак с «+» на «-«.

В точке минимума функции производная меняет знак с «-» на «+».

6 . Находим значение функции в концах отрезка,

  • затем сравниваем значение функции в концах отрезка и в точках максимума, и выбираем из них наибольшее, если нужно найти наибольшее значение функции
  • или сравниваем значение функции в концах отрезка и в точках минимума, и выбираем из них наименьшее, если нужно найти наименьшее значение функции

Однако, в зависимости от того, как себя ведет функция на отрезке, это алгоритм можно значительно сократить.

Рассмотрим функцию . График этой функции выглядит так:

В зависимости от того, на каком промежутке мы будем рассматривать функцию, алгоритм нахождения наибольшего или наименьшего значения будет различным.

1. Рассмотрим функцию на отрезке

Функция возрастает на этом отрезке, поэтому наибольшее значение она будет принимать в правом конце отрезка: , а наименьшее — в левом: .

2. Рассмотрим функцию на отрезке

Очевидно, что наибольшее значение функция принимает в точке максимума , а наименьшее — в одном из концов отрезка, то есть надо найти значения и и выбрать из них наименьшее.

3. Если мы рассмотрим функцию на отрезке , то чтобы найти наибольшее значение, нам нужно будет сравнить значения функции в точке максимума и в правом конце отрезка, то есть и .

Чтобы найти наименьшее значение функции, нам нужно будет сравнить значения функции в точке минимума и в левом конце отрезка, то есть и .

Эти рассуждения очевидны, если перед глазами есть график функции. Но эскиз графика легко нарисовать, проведя исследование функции с помощью производной:

1. ОДЗ функции — множество действительных чисел.

Нанесем корни производной на числовую ось и расставим знаки. Теперь поведение функции легко определить, и, следуя за стрелками, символизирующими возрастание — убывание, можно схематично изобразить ее график:

Рассмотрим несколько примеров решения задач из Открытого банка заданий для подготовки к ЕГЭ по математике

1 . Задание B15 (№ 26695)

Найдите наибольшее значение функции на отрезке .

1. Функция определена при всех действительных значениях х

Очевидно, что это уравнений не имеет решений, и производная при всех значениях х положительна. Следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, то есть при х=0.

Ответ: 5.

2 . Задание B15 (№ 26702)

Найдите наибольшее значение функции на отрезке [ ].

Производная равна нулю при , однако, в этих точках она не меняет знак:

, следовательно, =3″ title=»3/>>=3″/> , значит, =0″ title=»3/>-3>=0″/> , то есть производная при всех допустимых значених х неотрицательна, следовательно, функция возрастает и принимает наибольшее значение в правом конце промежутка, при .

Чтобы стало очевидно, почему производная не меняет знак, преобразуем выражение для производной следующим образом:

Ответ: 5.

3 . Задание B15 (№ 26708)

Найдите наименьшее значение функции на отрезке [ ].

Расположим корни этого уравнения на тригонометрической окружности.

Промежутку принадлежат два числа: и

Расставим знаки. Для этого определим знак производной в точке х=0: . При переходе через точки и производная меняет знак.

Изобразим смену знаков производной функции на координатной прямой:

Очевидно, что точка является точкой минимума ( в ней производная меняет знак с «-» на «+»), и чтобы найти наименьшее значение функции на отрезке , нужно сравнить значения функции в точке минимума и в левом конце отрезка, .

Схитрим: так как результат должен быть целым числом, или конечной десятичной дробью, а таковым на является, следовательно подставим в уравнение функции

Экстремумы функции

Необходимое условие экстремума функции одной переменной

Достаточное условие экстремума функции одной переменной

Если в точке x * выполняется условие:

Пример №1 . Найти наибольшее и наименьшее значения функции: на отрезке [1; 3].
Решение.

Пример №2 . С помощью производных высших порядков найти экстремум функции y=x-2sin(x) .
Решение.
Находим производную функции: y’=1-2cos(x) . Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=± π /3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x= π /3+2πk, k∈Z – точки минимума функции; , значит x=- π /3+2πk, k∈Z – точки максимума функции.

Пример №3 . Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0 , то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.