Окружность, вписанная в правильный треугольник

Окружность, вписанная в правильный треугольник, помимо свойств вписанной в произвольный треугольник окружности, обладает своими собственными свойствами.

1) Центр вписанной в треугольник окружности — точка пересечения его биссектрис.

Поскольку в равностороннем треугольнике биссектрисы, медианы и высоты совпадают, то центр вписанной в правильный треугольник окружности является точкой пересечения не только его биссектрис, но также медиан и высот.

Например, в правильном треугольнике ABC AB=BC=AC=a

точка O — центр вписанной окружности.

AK, BF и CD — биссектрисы, медианы и высоты треугольника ABC.

2) Расстояние от центра вписанной окружности до точки касания её со стороной треугольника равно радиусу. Так как центр вписанной в правильный треугольник окружности лежит на пересечении его медиан, а медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то радиус вписанной в равносторонний треугольник окружности равен одной третьей длины медианы:

Таким образом, формула для радиуса вписанной в правильный треугольник окружности

Обратно, сторона равностороннего треугольника через радиус вписанной окружности:

3) Так как формула для нахождения площади равностороннего треугольника через сторону

можем найти площадь через r:

Таким образом, формула площади правильного треугольника через радиус вписанной окружности —

3) Все отрезки, на которые стороны равностороннего треугольника делятся точками касания вписанной окружности, равны половине его стороны:

4) Центр вписанной в правильный треугольник окружности является также центром описанной около него окружности.

5) Радиус вписанной в равносторонний треугольник окружности в два раза меньше радиуса описанной окружности:

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Калькулятор — вычислить, найти радиус вписанной окружности в равносторонний треугольник

Формула радиуса вписанной окружности в равносторонний треугольник

Тест по теме «Геометрическая прогрессия» 9 класс Золотарева Наталья Ивановна, учитель математики МБОУ «Рыбаловская СОШ». № слайда 2 Уровень А (обязательный. Каждый уровень содержит по пять вопросов-задач, с тремя вариантами ответов. После выполнения пятой задачи уровня переход.

Равносторонний треугольник. Начальный уровень.

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Какие же особенные свойства присущи равностороннему треугольнику?

Равносторонний треугольник. Свойства.

Естественно, не правда ли? Три одинаковых угла, в сумме, значит, каждый по.

Почему так? А посмотрим-ка на Равносторонний треугольник:

Значит, любая высота в равностороннем треугольнике является также и биссектрисой, и медианой, и серединным перпендикуляром! В равностороннем треугольнике оказалось не особенных линий, как во всяком обычном треугольнике, а всего три!

Уже должно быть очевидно, отчего так.

Посмотри на рисунок: точка – центр треугольника. Значит, – радиус описанной окружности (обозначили его ), а – радиус вписанной окружности (обозначим ). Но ведь точка – ещё и точка пересечения медиан! Вспоминаем, что медианы точкой пересечения делятся в отношении, считая от вершины. Поэтому, то есть.

Давай удостоверимся в этом.

Равносторонний треугольник. Высота

Рассмотрим – он прямоугольный.

Равносторонний треугольник. Радиус описанной окружности

А это почему? Мы уже выяснили, что точка – не только центр описанной окружности, но и точка пересечения медиан. Значит, .

Величину мы уже находили. Теперь подставляем:

Равносторонний треугольник. Радиус вписанной окружности

Это уже теперь должно быть совсем ясно

Ну вот, все основные сведения обсудили. Конечно, можно задавать сотни вопросов про всякие длины всяких отрезков в равностороннем треугольнике. Но главное, что следует иметь в виду, решая задачки о равностороннем треугольнике, – это то, что все его углы известны – равны и все высоты являются и биссектрисами, и медианами, и серединными перпендикулярами.

Комментарии

Распространение материалов без согласования допустимо при наличии dofollow-ссылки на страницу-источник.

Политика конфиденциальности

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

    Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т. д.

Как мы используем вашу персональную информацию:

    Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях. Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений. Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг. Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

    В случае если необходимо — в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ — раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях. В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности — включая административные, технические и физические — для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Спасибо за сообщение!

Ваш комментарий принят, после модерации он будет опубликован на данной странице.

Хотите узнать что скрыто под катом и получать эксклюзивные материалы по подготовке к ОГЭ и ЕГЭ? Оставьте e-mail

Формула радиуса вписанной окружности в равносторонний треугольник

Равносторонний треугольник формулы

Равносторонний треугольник – это треугольник, у которого все стороны равны.

Другие виды треугольников:

Любой равносторонний треугольник характеризуется стороной a (см. рисунок). При решении задач могут понадобиться высота h, радиусы вписанной (r) и описанной (R) окружности. Именно эти характеристики используются в Формулах равностороннего треугольника при вычислении площади, периметра, а также радиусов вписанной и описанной окружностей.

Формула радиуса вписанной окружности для равностороннего треугольника

Радиус вписанной окружности r можно вычислить, зная сторону равностороннего треугольника:

Формула радиуса описанной окружности для равностороннего треугольника

Радиус описанной окружности R можно вычислить, зная сторону равностороннего треугольника:

Формула периметра равностороннего треугольника

Периметр P равностороннего треугольника можно получить, зная его сторону:

Формулы площади равностороннего треугольника

Площадь равностороннего треугольника S можно вычислить, зная его сторону a:

Площадь равностороннего треугольника S также можно вычислить, зная его высоту h:

Если в задаче присутствует окружность, вписанная в треугольник, площадь равностороннего треугольника можно вычислить через радиус окружности r:

Если в задаче присутствует окружность, описанная вокруг треугольника, площадь равностороннего треугольника можно вычислить через радиус окружности R:

Поделитесь статьей с одноклассниками «РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК формулы площади, периметра и радиуса».

Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.

До экзаменов еще есть время!

Напишите, каких разделов и тем Вам не хватает на сайте, и мы постараемся по возможности их добавить:

Формула радиуса вписанной окружности в равносторонний треугольник

Равносторонний треугольник формулы

Равносторонний треугольник – это треугольник, у которого все стороны равны.

Другие виды треугольников:

Любой равносторонний треугольник характеризуется стороной a (см. рисунок). При решении задач могут понадобиться высота h, радиусы вписанной (r) и описанной (R) окружности. Именно эти характеристики используются в Формулах равностороннего треугольника при вычислении площади, периметра, а также радиусов вписанной и описанной окружностей.

Формула радиуса вписанной окружности для равностороннего треугольника

Радиус вписанной окружности r можно вычислить, зная сторону равностороннего треугольника:

Формула радиуса описанной окружности для равностороннего треугольника

Радиус описанной окружности R можно вычислить, зная сторону равностороннего треугольника:

Формула периметра равностороннего треугольника

Периметр P равностороннего треугольника можно получить, зная его сторону:

Формулы площади равностороннего треугольника

Площадь равностороннего треугольника S можно вычислить, зная его сторону a:

Площадь равностороннего треугольника S также можно вычислить, зная его высоту h:

Если в задаче присутствует окружность, вписанная в треугольник, площадь равностороннего треугольника можно вычислить через радиус окружности r:

Если в задаче присутствует окружность, описанная вокруг треугольника, площадь равностороннего треугольника можно вычислить через радиус окружности R:

Поделитесь статьей с одноклассниками «РАВНОСТОРОННИЙ ТРЕУГОЛЬНИК формулы площади, периметра и радиуса».

Нашли ошибку? Выделите текст и нажмите Ctrl + Enter.

До экзаменов еще есть время!

Напишите, каких разделов и тем Вам не хватает на сайте, и мы постараемся по возможности их добавить: