Определенный интеграл. Как вычислить площадь фигуры

Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу – как с помощью определенного интеграла вычислить площадь плоской фигуры. Наконец-то ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.

Для успешного освоения материала, необходимо:

1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Неопределенный интеграл. Примеры решений.

2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений.

В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа, поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала Графики и свойства элементарных функций и статьи о геометрических преобразованиях графиков.

Собственно, с задачей нахождения площади с помощью определенного интеграла все знакомы еще со школы, и мы мало уйдем вперед от школьной программы. Этой статьи вообще могло бы и не быть, но дело в том, что задача встречается в 99 случаев из 100, когда студент мучается от ненавистной вышки с увлечением осваивает курс высшей математики.

Материалы данного практикума изложены просто, подробно и с минимумом теории.

Начнем с криволинейной трапеции.

Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми , и графиком непрерывной на отрезке функции , которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:

Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ.

Вычислить площадь фигуры, ограниченной линиями , , , .

Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО.

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):

Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке график функции расположен над осью , поэтому:

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений.

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Вычислить площадь фигуры, ограниченной линиями , , и осью

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью ?

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение: Выполним чертеж:

Внимание! Не следует путать два типа задач:

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Найти площадь плоской фигуры, ограниченной линиями , .

Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .
Этим способом лучше, по возможности, не пользоваться.

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справке Графики и свойства элементарных функций. Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

А теперь рабочая формула: Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь фигуры, ограниченной графиками данных функций и прямыми , , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ.

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен не выше оси , то

А сейчас пара примеров для самостоятельного решения

Найти площадь фигуры, ограниченной линиями , .

Найти площадь фигуры, ограниченной линиями , .

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:

Вычислить площадь фигуры, ограниченной линиями , , , .

Решение: Сначала выполним чертеж:

…Эх, чертеж хреновенький вышел, но вроде всё разборчиво.

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:

1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Переходим еще к одному содержательному заданию.

Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде , и выполним поточечный чертеж:

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:

Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.

На отрезке , по соответствующей формуле:

Ну, и в заключение урока, рассмотрим два задания сложнее.

Вычислить площадь фигуры, ограниченной линиями , ,

Решение: Изобразим данную фигуру на чертеже.

Блин, забыл график подписать, а переделывать картинку, простите, не хотца. Не чертёжный, короче, сегодня день =)

Для поточечного построения необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций), а также некоторые значения синуса, их можно найти в тригонометрической таблице. В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции расположен над осью , поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на уроке Интегралы от тригонометрических функций. Это типовой прием, отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной , тогда:

Новые пределы интегрирования:

У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений.

(4) Здесь мы использовали свойство определенного интеграла , расположив пределы интегрирования в «привычном» порядке

Вычислить площадь фигуры, ограниченной линиями , ,

Это пример для самостоятельного решения. Полное решение и ответ на нижнем этаже.

Вот, пожалуй, и все основные принципиальные приёмы нахождения площадей. Помимо рассмотренных методов интегрирования, иногда приходится применять формулу интегрирования по частям в определенном интеграле, что не представляет собой особых трудностей. Какой-то интересный пример придумать сложно, … хотя… арккотангенса вроде еще нигде не встречалось:

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Полного решения не будет, надо же вас немного помучить. А правильный ответ скажу: . Весь необходимый материал для выполнения задания на сайте есть! 😉 И даже больше – через долгие три года, наконец-то появились статьи Вычисление площади в полярных координатах и Вычисление площади, если линия задана параметрически.

Решения и ответы:

Пример 2: Решение:
Выполним чертеж:

На отрезке график функции расположен над осью , поэтому:

Ответ:
Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.

Пример 5: Решение:
Выполним чертеж:

На отрезке , по соответствующей формуле:

Ответ:

Пример 6: Решение:
Выполним чертеж.

На отрезке , по соответствующей формуле:

Ответ:

Пример 10: Решение:
Изобразим данную фигуру на чертеже:

На отрезке график функции расположен над осью , поэтому:

Ответ:
Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества . Далее в интегралах я использовал метод подведения функций под знак дифференциала (можно было использовать замену в определенном интеграле, но решение получилось бы длиннее). Если возникли трудности с данными интегралами, посетите урок Интегралы от тригонометрических функций.

Вычисление площади фигуры, ограниченной параметрически заданной кривой.

При выяснении геометрического смысла определенного интеграла, мы получили формулу для нахождения площади криволинейной трапеции, ограниченной осью Ох , прямыми x=a, x=b и непрерывной неотрицательной (неположительной) функцией y=f(x) . В некоторых случаях функцию, которая ограничивает фигуру, удобно задать в параметрическом виде, то есть, представить функциональную зависимость через параметр t . В этой статье мы разберемся, как находить площадь фигуры в случае параметрического задания ограничивающей кривой.

После краткого обзора теории и вывода формулы, мы подробно рассмотрим решение характерных примеров на нахождение площади фигуры, ограниченной параметрически заданной линией.

Навигация по странице.

Формула для вычисления площади фигуры, ограниченной параметрически заданной линией.

Пусть границами криволинейной трапеции являются прямые x=a, x=b , ось абсцисс и параметрически заданная кривая , причем функции и непрерывны на интервале , монотонно возрастает на нем и .

Тогда площадь криволинейной трапеции находится по формуле .

Эта формула получается из формулы площади криволинейной трапеции подстановкой :

Если функция является монотонно убывающей на интервале , то формула примет вид .

Если функция не является основной элементарной, то для выяснения ее возрастания или убывания может потребоваться теория из раздела возрастание и убывание функции на интервале.

Примеры вычисления площади фигуры, ограниченной параметрически заданной кривой.

Рассмотрим примеры применения полученной формулы, позволяющей вычислять площади фигур, ограниченных параметрически заданными линиями.

Вычислить площадь фигуры, ограниченной линией, параметрические уравнения которой имеют вид .

В нашем примере параметрически заданная линия представляет собой эллипс с полуосями 2 и 3 единицы. Построим его.

Найдем площадь четверти эллипса, расположенной в первом квадранте. Эта область лежит в интервале . Площадь всей фигуры вычислим, умножив полученное значение на четыре.

Для k = 0 получаем интервал . На этом интервале функция монотонно убывающая (смотрите раздел основные элементарные функции, их свойства и графики). Применяем формулу для вычисления площади и определенный интеграл находим по формуле Ньютона-Лейбница:

Таким образом, площадь исходной фигуры равна .

Возникает логичный вопрос: почему мы брали четверть эллипса, а не половину? Можно было рассмотреть верхнюю (или нижнюю) половину фигуры. Она находится на интервале . Для этого случая мы бы получили

То есть, для k = 0 получаем интервал . На этом интервале функция монотонно убывающая.

Тогда площадь половины эллипса находится как

А вот правую или левую половины эллипса взять не получится.

Параметрическое представление эллипса с центром в начале координат и полуосями a и b имеет вид . Если действовать так же, как и в разобранном примере, то получим формулу для вычисления площади эллипса .

Окружность с центром в начале координат радиуса R через параметр t задается системой уравнений . Если воспользоваться полученной формулой площади эллипса, то сразу можно записать формулу для нахождения площади круга радиуса R : .

Решим еще один пример.

Вычислить площадь фигуры, ограниченной кривой, заданной параметрически .

Забегая немного вперед, кривая является «вытянутой» астроидой. (Астроида имеет следующее параметрическое представление ).

Остановимся подробно на построении кривой, ограничивающей фигуру. Строить ее мы будем по точкам. Обычно такого построения достаточно для решения большинства задач. В более сложных случаях, несомненно, потребуется детальное исследование параметрически заданной функции с помощью дифференциального исчисления.

В нашем примере .

Эти функции определены для всех действительных значений параметра t , причем, из свойств синуса и косинуса мы знаем, что они периодические с периодом два пи. Таким образом, вычисляя значения функций для некоторых (например ), получим набор точек .

Для удобства занесем значения в таблицу:

Отмечаем точки на плоскости и ПОСЛЕДОВАТЕЛЬНО соединяем их линией.

Вычислим площадь области, расположенной в первой координатной четверти. Для этой области .

При k=0 получаем интервал , на котором функция монотонно убывает. Применяем формулу для нахождения площади:

Полученные определенные интегралы вычислим по формуле Ньютона-Лейбница, а первообразные для формулы Ньютона-Лейбница найдем с помощью рекуррентной формулы вида , где .

Следовательно, площадь четверти фигуры равна , тогда площадь всей фигуры равна .

Аналогично можно показать, что площадь астроиды находится как , а площадь фигуры, ограниченной линией , вычисляется по формуле .

Площадь фигуры, ограниченной линиями

Пример №1 . Вычислить площадь фигуры, ограниченной линиями и x+y=6 .
Решение. Построим в системе координат xOy эти линии. Найдем точки пересечения этих линий

Обозначим эти точки через A и В. Итак, А(1; 5), В(5; 1). Искомая площадь S равна разности площадей фигур, ограниченных линиями x=1, x=5, y=0,y=6-x (обозначим эту площадь через S1) и линиями x=1 , x=5 , y=0 , (эту площадь обозначим через S2). Таким образом
S = S1 – S2 =
Площадь S2 может быть вычислена с применением определенного интеграла
ед 2 .
Площадь S1 можно вычислить как сумму площадей прямоугольного треугольника и прямоугольника, но удобнее все-таки вычислить S1 как интеграл
.
Теперь можно вычислить и искомую площадь
S = S1 – S2 = 12 – 5 ln5
Ответ: S =12 – 5 ln5 ед 2 .