Площадь ромба

Оглавление

Ромб — это параллелограмм, у которого все стороны равны.

Для нахождения площади ромба есть несколько формул. В статье речь пойдет о трех способах. В первом необходимо знать размеры диагоналей, во втором сторону и ее высоту, в третьем сторону и угол.

По диагоналям

Площадь ромба равна половине произведения его диагоналей.

Диагональ AC = 8см

Диагональ BD = 4см

Площадь ромба равна см 2

По высоте и стороне

Площадь ромба равна произведению его стороны на высоту.

Сторона AD = 4см

Площадь ромба равна см 2

По стороне и углу

Площадь ромба равна квадрату стороны на синус любого угла между смежными сторонами.

Пример по углу α

Сторона AD = 5см

Угол α = 45° ( sin(45°) равен примерно 0.71 )

Пример по углу β

Сторона AD = 5см

Угол α = 135° ( sin(135°) равен примерно 0.71 )

Площадь ромба

Площадь ромба можно найти по формулам для нахождения площади параллелограмма. С учётом свойств ромба, некоторые из этих формул меняют свой вид.

I. Площадь ромба по стороне и высоте

Площадь ромба равна произведению стороны ромба и его высоты.

Формула для нахождения площади ромба по стороне и высоте не отличается от соответствующей формулы площади параллелограмма:

Например, площадь ромба ABCD равна

Так как все стороны ромба равны и все его высоты равны, для нахождения площади можно брать любую сторону и любую высоту.

II. Площадь ромба по стороне и углу

Площадь ромба равна произведению квадрата его стороны на синус угла.

Формула для нахождения площади ромба через сторону и угол:

Например, площадь ромба ABCD равна

Так как ∠D=180-∠A, sin∠D=sin(180-∠A)=sin∠A, то для нахождения площади можно брать синус любого угла.

III. Площадь ромба через его диагонали

Площадь ромба равна половине произведения его диагоналей.

Формула для нахождения площади ромба по его диагоналям

по сравнению с соответствующей формулой площади параллелограмма упрощается (так как диагонали ромба взаимно перпендикулярны, а синус прямого угла равен единице).

Например, площадь ромба ABCD равна

IV. Площадь ромба через радиус вписанной окружности

Площадь ромба равна произведению его полупериметра на радиус вписанной окружности.

Формула для нахождения площади ромба через радиус вписанной окружности

аналогов среди формул для нахождения площади параллелограмма не имеет (поскольку из всех параллелограммов окружность можно вписать только в ромб и квадрат).

Например, площадь ромба ABCD равна

Так как полупериметр ромба равен p=2a, формулу можно записать в виде

Площади фигур. Площадь ромба.

Площадь плоской фигуры — аддитивная числовая характеристика фигуры, полностью принадлежащей

одной плоскости. Если фигуру можно разбить на конечное множество единичных квадратов, то площадь

будет равна числу этих квадратов.

Ромб — это параллелограмм с равными сторонами. Ромб с прямыми углами называется квадратом.

Площадь ромба равна половине произведения его диагоналей.

Воспользуйтесь нашим калькулятором для расчета площади ромба.

Для расчета площади других фигур воспользуйтесь этим калькулятором: площади фигур.

Формулы для вычисления площади ромба.

  1. Формула площади ромба по длине стороны и его высоте.

Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

  1. Формула площади ромба по длине стороны и углу.

Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

  1. Формула площади ромба по длинам его диагоналей.

Площадь ромба равна половине произведению длин его диагоналей.

где S — Площадь ромба,

a — длина стороны ромба,

h — длина высоты ромба,

α — угол между сторонами ромба,

Еще некоторые формулы для определения площади ромба: