Площадь треугольника, площадь прямоугольника, площадь трапеции, площадь квадрата, площадь круга, площадь полукруга и сектора, площадь параллелограмма. Площади плоских фигур. Формулы площади

Площадь треугольника, площадь прямоугольника, площадь трапеции, площадь квадрата, площадь круга, площадь полукруга и сектора, площадь параллелограмма.

Справочно: число пи

Пример 1

Прямоугольный поднос имеет длину 900 мм и ширину 350 мм. Определить его площадь в а) мм 2 , б) в см 2 , в) в м 2

а) Площадь =длина*ширина=900*350=315000 мм 2

б) 1 см 2 =100 мм 2 , следовательно,

315000 мм 2 =315000/100=3150 см 2

1 м 2 =10000 см 2 , следовательно,

3150 см 2 =3150/10000=0.315 м 2

Пример 2

Сечение балки можно разделить на три отдельных прямоугольника, как показано на рисунке

Sb=(65-5-3)*4=228 мм 2

Общая площадь балки 150+228+300=678 мм 2 =6.78 см 2 .

Пример 3

Определить площадь дорожки, показанной на рисунке.

Площадь дорожки = площадь большого прямоугольника — площадь малого прямоугольника

S=35*15-29*11=206 м 2

Пример 4

Определить площадь параллелограмма, показанного на рисунке (размеры приведены в миллиметрах).

Площадь параллелограмма = основание * высота. Высота h определяется по теореме Пифагора BC 2 =CE 2 +h 2

20 2 =(36-30) 2 +h 2

h 2 =20 2 -6 2 =164

Следовательно, Sabcd=30*14.3=429 мм 2

Пример 5

Показана боковая сторона здания. Определить площадь кирпичной кладки на боковой стороне.

Боковая сторона состоит из прямоугольника и треугольника.

S треуг. =1/2*основание*высота

CD=5 м, AD=6 м, следовательно, AC=3 м (по т. Пифагора). Следовательно,

Общая площадь кирпичной кладки есть 60+15=75 м 2

Пример 6

Определить площади кругов, имеющих а) радиус 3 см, б) диаметр 10 мм, в) длину окружности 60 мм.

S=πr 2 или πd 2 /4.

а) S=πr 2 =π(3) 2 =9π=28.26 см 2

б) S=πd 2 /4=π(10) 2 /4=100π/4=78.5 мм 2

в) Длина окружности с=2πr, следовательно,

S=πr 2 =π(30/π) 2 =286.62 мм 2

Пример 7

Вычислить площадь правильного восьмиугольника со стороной 5 см и поперечником 10 см.

Восьмиугольник — это многоугольник с 8 сторонами. Если из центра многоугольника провести лучи к вершинам, получится восемь одинаковых треугольников.

S треуг. =1/2*основание*высота=1/2*5*10/2=12.5 см 2

Площадь восьмиугольника есть 8*12.5=100 см 2

Пример 8

Определить площадь правильного шестиугольника со стороной 10 см.

Шестиугольник — это многоугольник с шестью сторонами, который может быть разбит на шесть равных треугольников, как показано на рис. сходящиеся в центре многоугольника углы треугольника равны 360 о /6=60 о

Другие два угла каждого треугольника составляют в сумме 120 о и равны между собой.

Следовательно, все треугольники являются равносторонними с углами 60 о и стороной 10 см

S треуг. =1/2*основание*высота

Высоту h находим по теореме Пифагора:

Отсюда h 2 =100-25=75

Следовательно, S треуг. =1/2*10*8.66=43.3 см 2

Площадь шестиугольника равна 6*43.3=259.8 см 2

Площадь поперечного сечения

При решении заданий сопротивления материалов в расчетные формулы вводят величины, которые определяют формулу и размеры поперечных сечений, они называются геометрическими характеристиками плоских сечений. Первой такой величиной стоит считать площадь сечения. Рассчитать площадь поперечного сечения можно даже ствола дерева, ведь оно по форме похоже на эллипс или круг. Согласно формуле, площадь поперечного сечения круга, возможно, рассчитать достаточно точно по формуле. Площадь сечения круга или шара можно найти по формуле:

S = πR 2

При этом не стоит забывать о том, что расстояние от плоскости до центра фигуры совпадет с плоскостью, тогда плоскость поперечного сечения шара будет равняться нулю, так как касание им плоскости происходит лишь в одной точке.

Рассмотрим на примере параллелограмма. Прежде всего, для того чтобы найти площадь поперечного сечения, необходимо знать значения высоты и снования параллелограмма. Даже если нам известна только ширина основания и его длина через эти значения возможно найти диагональ, используя теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равняется сумме квадратов катетов. Формула выглядит как:

a 2 + b 2 = c 2

Из нее можно вывести такую формулу:

c = S*q*r*t*(a 2 + b 2 )

Когда у нас известно значение диагонали параллелограмма, то его можно подставить в формулу:

S – площадь поперечного сечения, h это значений высоты параллелограмма. Результат, который получится после исчислений, будет означать площадь поперечного сечения. Такая формула:

используется в тех случаях, когда сечение идет параллельно двум основаниям.

При вычислении площади поперечного сечения цилиндра, которое проходит вдоль его оснований, если одна из сторон данного прямоугольника тождественна радиусу основания, а другая из сторон – высоте цилиндра используется такая формула:

где h – высота цилиндра R – величина радиуса окружности. Если же сечение не проходит сквозь ось цилиндра и одновременно параллельно его основаниям, то это означает, что сторона данного треугольника не равняется диаметру окружности основания.

Для решения этой проблемы необходимо узнать значение неизвестной стороны предварительно нарисовав окружность у основания цилиндра. Расчет производится также по формуле выведенной из теоремы Пифагора. Затем подставляется формула:

где 2а – значение хорды, расчета площади поперечного сечения.

Расчет площади поперечного сечения круга

В инженерной и строительной практике нередко встречаются задачи по расчёту площади поперечного сечения. Если фигуру разрезать по линии, которая перпендикулярна продольной оси предмета, то полученный торец и будет поперечным сечением. Круг — один из наиболее часто встречающихся видов подобного рассечения. Такой срез присущ цилиндру, шару, конусу, тору, эллипсоиду.

Определение величины

Площадь — это величина, характеризующая размер геометрической фигуры. Её определение — одна из древнейших практических задач. Древние греки умели находить площадь многоугольников: так, каменщикам, чтобы узнать размер стены, приходилось умножать её длину на высоту.

По прошествии долгих лет трудом многих мыслителей был выработан математический аппарат для расчета этой величины практически для любой фигуры.

На Руси существовали особые единицы измерения: копна, соха, короб, верёвка, десятина, четь и другие, так или иначе связанные с пахотой. Две последних получили наибольшее распространение. Однако от древнерусских землемеров нам досталось только само слово — «площадь».

С развитием науки и техники появилось не только множество формул для расчёта площадей любых геометрических фигур, но и приборы, которые делают это за человека. Такие приборы называют планиметрами.

Область применения

Круг — одна из фундаментальных фигур, которые окружают человека повсюду. Трубы, колеса, лампы, конфорки у плиты — всё это имеет форму круга или поперечное сечение в виде круга. Расчёт площади такого сечения может понадобиться в следующих ситуациях:

  1. Определение объемов емкостей.
  2. Решение задач по сопротивлению материалов и электротехнике.
  3. Расчет количества материалов при проектировании, строительстве и ремонте.
  4. Ведение поливного земледелия.

Стоит обратить внимание на разницу между кругом и окружностью. Окружность — это замкнутая кривая, все точки которой равно удалены от центра, в то время как круг — это часть плоскости (геометрическая фигура), ограниченная окружностью.

Круг имеет ряд характеристик:

  • радиус (r/R) — отрезок, соединяющий центр фигуры с его границей;
  • диаметр (d/D) — отрезок, который соединяет две точки границы круга и проходит через его центр;
  • длина окружности (C/c/L/l).

Теорема гласит: площадь круга (S) равна произведению половины длины окружности и его радиуса. Длина окружности С находится в прямой зависимости от радиуса R с коэффициентом π («пи» = 3,14).

Способы расчета

Чтобы получить круглое поперечное сечение, необходимо разрезать объёмную фигуру перпендикулярно оси вращения. В случае с цилиндром площади всех поперечных сечений будут равны между собой — как, например, кружки колбасы, нарезанные поперек батона, одинаковы.

Шар, по сути, представляет собой напластование блинчиков-кругов различного диаметра от точечного до заданного и обратно до точки. Чтобы найти S какого-либо из блинчиков, необходимо определить его радиус. Принцип его расчёта сводится к решению теоремы Пифагора, где гипотенузой выступает радиус шара, а искомый радиус становится одним из катетов.

При расчёте площади сечений конуса необходимо найти радиус или диаметр каждого из кругов, учитывая, что в продольном разрезе конус — это равнобедренный треугольник.

Цилиндр, конус и шар — базовые объемные фигуры. Однако существуют более сложные фигуры, например, тор. Тор, или тороид, при первом приближении являет собой не что иное, как бублик или баранку. Разломив его пополам, на торцах можно увидеть два одинаковых круга. Площадь такого поперечного сечения можно получить, удвоив имеющуюся (на рисунке серая область справа). Если взять нож и рассечь баранку вдоль, на срезе получится кольцо. В случае с такой фигурой необходимо найти площадь круга по внешней окружности и вычесть из нее «дырку от бублика» (показано серым на рисунке слева).

Площадь круглого поперечного сечения рассчитывается исходя из имеющихся характеристик. Она сводится к трем основным формулам. Их можно представить таким образом:

  1. Самая популярная, легкая в применении и часто используемая формула. Чтобы узнать площадь фигуры, если известен её радиус, нужно возвести это значение в квадрат и умножить на число π. Для бытовых расчетов достаточно двух знаков после запятой, то есть π = 3,14.
  2. Иногда оперируют диаметром, а не радиусом круга. В этом случае к вычислениям добавляется одна операция: диаметр умножают сам на себя, затем на число π, а произведение делят на 4.
  3. Если известна длина окружности С и ее радиус R и нужно выяснить площадь круга, ограниченного этой окружностью, не понадобится даже π. Используют следующую формулу: значение С делят пополам и умножают на R. Полученное чисто и будет искомой величиной.

Способов определения того, чему равна площадь круга, достаточно много. Чаще всего, если возникает подобная задача, на ум приходит знакомая еще со школьной скамьи формула «эс равно пи эр квадрат».