Признаки равенства прямоугольных треугольников

Для прямоугольных треугольников можно сформулировать следующие признаки равенства треугольников:

Первый признак равенства (по двум катетам)

1 признак (по двум катетам). Если два катета одного прямоугольного треугольника равны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники равны (рис. 1)

Второй признак равенства (по катету и гипотенузе)

2 признак (по катету и гипотенузе). Если катет и гипотенуза одного прямоугольного треугольника равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны (рис. 2).

Третий признак равенства (по гипотенузе и острому углу)

3 признак (по гипотенузе и острому углу). Если гипотенуза и острый угол одного прямоугольного треугольника равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны (рис. 3).

Четвертый признак равенства (по катету и острому углу)

4 признак (по катету и острому углу). Если катет и острый угол одного прямоугольного треугольника равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны (рис. 4).

Признаки равенства прямоугольных треугольников

Признаки равенства прямоугольных треугольников позволяют доказать равенство треугольников всего по двум парам элементов.

Признак равенства прямоугольных треугольников по двум катетам

Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.

Признак равенства прямоугольных треугольников по катету и гипотенузе

Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.

Признак равенства по гипотенузе и острому углу

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Признак равенства прямоугольных треугольников по катету и острому углу

Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.

28 Comments

Спасибо, все коротко и ясно.

спасибо большое) доступно все объяснили

А где пятый признак?

Max, признак равенства прямоугольных треугольников по катету и острому углу разбивается на два признака: по катету и противолежащему углу и по катету и прилежащему углу, потому что доказывают их отдельно.

Спасибо выручили.
Очень рад, что всё так доступно и понятно.

есть еще по катету и противолежащему острому углу

Да, признак равенства по катету и острому углу иногда разбивают на два.

Офигенно! Большое спасибо!

Спс, как раз геометрию не слушал.

В геометрии знание теории — основа. Поэтому желательно слушать)

все нормально конечно, но было бы лучше если б было доно.

Это разве не нужно доказывать ? Плз ответ, у меня экзамен будет и нужно знать, надо это доказывать или прочитать хватит ?

Роман, если использовать признаки равенства в ходе решения других задач, то каждый раз доказывать их не нужно.

Спасибо у нас злая алгебраических которая ничего не объясняет поэтому никто не понял.

А вы на уроке попробуйте не шуметь. От этого выиграет и класс, и учитель.

Спасибо, помогли подготовиться к зачёту!

Удачно Вам сдать зачёт!

Скоро зачёт, и решил почитать не из учебника, а тут. Итог: Всё быстро и понятно, без так сказать «воды»,вообщем, спасибо

Игорь, удачи Вам на зачёте!

Спасибо большое у меня через 1 месяц экзамен

Илья, желаю Вам успешно сдать экзамен!

Здравствуйте. Хотелось бы к Вам обратиться по имени, но не вижу его. Спасибо Вам за сайт. Доступно, понятно, наглядно! Приятно, что при доказательстве теорем Вы стремитесь к оптимальному, более короткому пути, например в свойстве медиан треугольника. Что же касается признака равенства прямоугольных треугольников по катету и острому углу. Вы объясняли в переписке некоторым людям, что он разбивается на два признака. Тем не менее, Вы оставляете некорректную формулировку: «Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны». При этом поясняющий рисунок соответствует верному случаю и не показывает другой — неверный. Все же нужно согласиться с тем, что это два различных признака с различными формулировками, как у Вас и написано, правда в другом месте, в разделе доказательства.
С уважением,
Олег.

Здравствуйте, Олег!
Спасибо Вам за внимание к моему ресурсу.

Зовут меня Светлана Михайловна. Учу детей математике 28 лет: 16 — в школе, 12 — как репетитор. Сайты (у меня их несколько) создавала для помощи школьникам и их родителям. К сожалению, информация в учебнике не всегда изложена доступно. Очень хочется, чтобы ученики поняли, что математика (в частности, геометрия) — интересный и не такой уж сложный предмет.

Насколько я Вас поняла, Вы предлагаете разделить признаки равенства прямоугольных треугольников по катету и острому углу на два отдельных признака, как это сделано, к примеру, в учебнике Бутузова? Вы считаете, это принципиально важно для дальнейшей работы? Ведь оба признака доказаны.

Признаки равенства прямоугольных треугольников

Урок 24. Геометрия 7 класс

Конспект урока «Признаки равенства прямоугольных треугольников»

Первый признак равенства треугольников:

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Второй признак равенства треугольников:

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Воспользуемся первым и вторым признаками равенства треугольников и докажем следующие признаки равенства прямоугольных треугольников.

Теорема (о равенстве прямоугольных треугольников по двум катетам):

Если катеты одного прямоугольного треугольника соответственно равны катетам другого прямоугольного треугольника, то такие треугольники равны.

Возьмём два прямоугольных треугольника АВС и А1В1С1. Пусть катет АС=А1С1, а катет ВС=В1С1. В прямоугольном треугольнике угол между катетами прямой, а любые два прямых угла равны. То есть ∠С=С1=90 градусов. Получаем, что треугольники АВС и А1В1С1 равны по первому признаку равенства треугольников. Теорема доказана.

Теорема (о равенстве прямоугольных треугольников по катету и прилежащему острому углу):

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие треугольники равны.

Пусть АВС и А1В1С1 — прямоугольные треугольники, и катет АС=А1С1, а ∠А=∠А1. А также ∠С=∠С1=90 градусов. Следовательно, получаем, что треугольники АВС и А1В1С1 равны по второму признаку равенства треугольников. Теорема доказана.

Теорема (о равенстве прямоугольных треугольников по гипотенузе и острому углу):

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Пусть АВС и А1В1С1 — прямоугольные треугольники, у которых ∠С=∠С1=90 градусов. Гипотенузы АВ и А1В1 равны. Углы А и А1 также равны. В прямоугольном треугольнике сумма острых углов равна 90 градусов, то есть:

Таким образом, получили, что гипотенуза АВ и два прилежащих к ней угла треугольника АВС соответственно равны гипотенузе А1В1 и двум прилежащим к ней углам треугольника А1В1С1. Следовательно, треугольники равны по второму признаку равенства треугольников. Теорема доказана.

Теорема (о равенстве прямоугольных треугольников по гипотенузе и катету):

Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольнике равны.

Пусть АВС и А1В1С1 — прямоугольные треугольники, у которых ∠С=∠С1=90 градусов. Гипотенуза АВ=А1В1 и катет АС=А1С1.

Приложим треугольники друг к другу равными катетами, получаем:

Получили равнобедренный треугольник В1АВ. АС — высота, проведённая из вершины. Тогда АС является и медианой, то есть В1С=СВ.

В результате получаем, что у прямоугольных треугольников АВС и А1В1С1 равны и вторые катеты. А следовательно, эти треугольники равны по трём сторонам (или по двум катетам). Теорема доказана.

На рисунке отрезки СА и DB перпендикулярны прямой АВ, отрезок ОА=ОВ. Доказать, что отрезок СА=DB.

Рассмотрим прямоугольные треугольники АСО и BDO. АО=OB по условию задачи. Углы AOC и BOD равны как вертикальные.

Тогда треугольники АСО и ВDО равны по катету и острому углу. Откуда отрезки СА и DB равны как стороны равных треугольников. Что и требовалось доказать.

В треугольниках АВС и А1В1С1 углы С и С1 — прямые, а отрезки АD и A1D1 — биссектрисы. Доказать, что треугольники АВС и А1В1С1 равны, если АD=А1D1 и ∠ВАС=∠В1А1С1.

Рассмотрим прямоугольные треугольники АСD и А1С1D1. У них гипотенуза АD=А1D1. Углы САD и С1А1D1 равны как половины равных углов САВ и С1А1В1. Получаем, что треугольники АСD и А1С1D1равны по гипотенузе и острому углу. Следовательно, АС и А1С1 равны как стороны равных треугольников. Тогда и треугольники АВС и А1В1С1 равны, так как катет АС=А1С1 и ∠ВАС=∠В1А1С1. Что и требовалось доказать.