Смежные углы определение теорема о сумме смежных углов

Два угла называются смежными, если одна сторона у них общая, а две другие являются дополнительными друг к другу лучами.

Теорема о смежных углах. Сумма градусных мер смежных углов равна \(180^<\circ>\).

Углы \(AOB\) и \(COB\) смежные. $$ \alpha+\beta=180^ <\circ>$$

Смежные углы определение теорема о сумме смежных углов

Определение . Два угла называются смежными , если у них одна сторона общая, а другие стороны этих углов являются дополнительными полупрямыми .

На рисунке 31 углы (а1b) и (a2b) смежные. У них сторона b общая, а стороны a1 и а2 являются дополнительными полупрямыми.

Пусть С — точка на прямой АВ, лежащая между точками А и В, а D — точка, не лежащая на прямой АВ (рис. 32). Тогда углы BCD и ACD смежные. У них сторона CD общая. Стороны СА и СВ являются дополнительными полупрямыми прямой АВ, так как точки А и В этих полупрямых разделяются начальной точкой С.

Из теоремы 2.1 следует, что если два угла равны, то смежные с ними углы равны.

Из теоремы 2.1 следует также, что если угол не развернутый, то его градусная мера меньше 180°.

Задача (3). Найдите смежные углы, если один из них в два раза больше другого.

Решение. Обозначим градусную меру меньшего из углов через х. Тогда градусная мера большего угла будет 2х. Сумма углов равна 180°. Итак,

x + 2x = 180, 3x = 180.

Отсюда x = 60. Значит, наши смежные углы равны 60° и 120°.

Угол, равный 90°, называется прямым углом.

Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом, есть прямой угол.

Угол, меньший 90°, называется острым углом. Угол, больший 90° и меньший 180°, называется тупым.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

wiki. eduVdom. com

Инструменты пользователя

Инструменты сайта

Боковая панель

Геометрия:

Контакты

Содержание

Смежные и вертикальные углы. Перпендикулярные прямые

Два угла называются смежными, если у них одна сторона общая, а другие стороны этих углов являются дополнительными лучами. На рисунке 20 углы АОВ и ВОС смежные.

Теорема 1. Сумма смежных углов равна 180°.

Доказательство. Луч ОВ (см. рис.1) проходит между сторонами развернутого угла. Поэтому ∠ АОВ + ∠ ВОС = 180° .

Из теоремы 1 следует, что если два угла равны, то смежные с ними углы равны.

Два угла называются вертикальными, если стороны одного угла являются дополнительными лучами сторон другого. Углы АОВ и COD, BOD и АОС, образованные при пересечении двух прямых, являются вертикальными (рис. 2).

Теорема 2. Вертикальные углы равны.

Доказательство. Рассмотрим вертикальные углы АОВ и COD (см. рис. 2). Угол BOD является смежным для каждого из углов АОВ и COD. По теореме 1 ∠ АОВ + ∠ BOD = 180°, ∠ COD + ∠ BOD = 180°.

Отсюда заключаем, что ∠ АОВ = ∠ COD.

Следствие 1. Угол, смежный с прямым углом, есть прямой угол.

Рассмотрим две пересекающиеся прямые АС и BD (рис.3). Они образуют четыре угла. Если один из них прямой (угол 1 на рис.3), то остальные углы также прямые (углы 1 и 2, 1 и 4 — смежные, углы 1 и 3 — вертикальные). В этом случае говорят, что эти прямые пересекаются под прямым углом и называются перпендикулярными (или взаимно перпендикулярными). Перпендикулярность прямых АС и BD обозначается так: AC ⊥ BD.

Серединным перпендикуляром к отрезку называется прямая, перпендикулярная к этому отрезку и проходящая через его середину.

Рассмотрим прямую а и точку А, не лежащую на ней (рис.4). Соединим точку А отрезком с точкой Н прямой а. Отрезок АН называется перпендикуляром, проведенным из точки А к прямой а, если прямые АН и а перпендикулярны. Точка Н называется основанием перпендикуляра.

Справедлива следующая теорема.

Теорема 3. Из всякой точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.

Для проведения на чертеже перпендикуляра из точки к прямой используют чертежный угольник (рис.5).

Замечание. Формулировка теоремы обычно состоит из двух частей. В одной части говорится о том, что дано. Эта часть называется условием теоремы. В другой части говорится о том, что должно быть доказано. Эта часть называется заключением теоремы. Например, условие теоремы 2 — углы вертикальные; заключение — эти углы равны.

Всякую теорему можно подробно выразить словами так, что ее условие будет начинаться словом «если», а заключение — словом «то». Например, теорему 2 можно подробно высказать так: «Если два угла вертикальные, то они равны».

Пример 1. Один из смежных углов равен 44°. Чему равен другой?

Решение. Обозначим градусную меру другого угла через x , тогда согласно теореме 1.
44° + х = 180°.
Решая полученное уравнение, находим, что х = 136°. Следовательно, другой угол равен 136°.

Пример 2. Пусть на рисунке 21 угол COD равен 45°. Чему равны углы АОВ и АОС?

Решение. Углы COD и АОВ вертикальные, следовательно, по теореме 1.2 они равны, т. е. ∠ АОВ = 45°. Угол АОС смежный с углом COD, значит, по теореме 1.
∠ АОС = 180° — ∠ COD = 180° — 45° = 135°.

Пример 3. Найти смежные углы, если один из них в 3 раза больше другого.

Решение. Обозначим градусную меру меньшего угла через х . Тогда градусная мера большего угла будет Зх . Так как сумма смежных углов равна 180° (теорема 1), то х + Зх = 180°, откуда х = 45°.
Значит, смежные углы равны 45° и 135°.

Пример 4. Сумма двух вертикальных углов равна 100°. Найти величину каждого из четырех углов.

Решение. Пусть условию задачи отвечает рисунок 2. Вертикальные углы COD к АОВ равны (теорема 2), значит, равны и их градусные меры. Поэтому ∠ COD = ∠ АОВ = 50° (их сумма по условию 100°). Угол BOD (также и угол АОС) смежный с углом COD, и, значит, по теореме 1
∠ BOD = ∠ АОС = 180° — 50° = 130°.

Отыскание смежных углов треугольника. Пример 5

В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°.

Найдите величину угла ABC . Ответ дайте в градусах.