Способы решения систем уравнений с двумя неизвестными

Линейные системы уравнений

Системы линейных уравнений. Метод подстановки

• Выражаем одну переменную через другую.

• Выраженную из одного уравнения переменную подставляем во второе уравнение. Получаем уравнение относительно одной переменной, которое и решаем.

• Опираясь на найденное значение одной переменной, находим значение второй, подставляя в оставшееся уравнение.

Решить систему уравнений:

Из первого уравнения системы выражаем через и подставляем во второе уравнение:

Вторая строка системы – уравнение с одной переменной. Решаем его и найденное значение подставляем в первое уравнение для нахождения .

Ответ:

Системы линейных уравнений. Метод сложения

Добиваемся, путем равносильных преобразований, наличия равных (или противоположных) коэффициентов при одной из неизвестных переменных в уравнениях.

Вычитаем (или складываем) полученные уравнения с целью выхода на уравнение с одной неизвестной.

Решаем полученное уравнение с одной неизвестной.

Найденное значение одной переменной подставляем в любое из уравнений системы, находим значение второй.

1. Решить систему уравнений:

Складываем уравнения системы, заменяя результатом одно из уравнений, оставляя другое.

Ответ:

2. Решить систему уравнений:

Прежде домножаем первую строку системы , вторую строку системы – на . Вычитаем уравнения системы, заменяя результатом одно из уравнений, оставляя другое.

Ответ:

Нелинейные системы уравнений

Системы уравнений, сводящихся к линейным

1. Решить систему уравнений:

Можно сделать замену и Тогда выходим на систему линейных уравнений:

Систему можно решить методом сложения, например.

Но приведем решение без замены.

Умножим первое уравнение системы на , второе – на и произведем сложение полученных уравнений, оставим при этом в системе, например, первое уравнение исходной системы.

Ответ:

2. Решить систему уравнений:

Можно сделать замену и выйти на систему линейных уравнений:

Приведем решение без замены.

Выражаем из второго уравнения системы и подставляем в первое.

Ответ:

Нелинейные системы уравнений. Метод подстановки

Решить систему уравнений:

Выражаем из первого уравнения системы и подставляем во второе.

Ответ:

Нелинейные системы уравнений. Метод сложения

Решить систему уравнений:

Складываем уравнения системы, заменяя результатом одно из уравнений, оставляя другое.

Ответ:

Нелинейные системы уравнений. Метод почленного умножения (деления)

1. Решить систему уравнений:

Производим деление первой строки на вторую, оставляем в системе вторую строку без изменений.

Ответ:

Симметрические системы. Метод введения переменной

Симметрическая система – система, все уравнения которой симметрические. Симметрическое уравнение от двух переменных и – уравнение, которое не изменяется при замене на и на .

Для таких систем удобно использовать замену

Решить систему уравнений:

При замене приходим к следующей системе

которую будем решать способом подстановки:

Производим обратную замену:

Ответ:

Системы однородных уравнений и приводящиеся к ним системы

Однородным уравнением с двумя неизвестными будем называть уравнение вида

1. Решить систему уравнений:

Первое уравнение системы – однородное. Производим деление первого уравнения системы на (можно и на или ). Заметим, опасности деления на ноль нет.

Первое уравнение системы – квадратное относительно .

Ответ:

2. Решить систему уравнений:

Применим прежде к системе метод сложения. После чего выйдем на однородное уравнение.

Ответ:

Графический метод решения систем уравнений

1. Решите графически систему уравнений:

Выразим в обеих строках системы через :

Первое уравнение системы задает прямую, второе – гиперболу. Строим графики в одной системе координат, находим координаты точек пересечения графиков.

Ответ:

2. Решите графически систему уравнений:

Первая строка системы задает окружность с центром в точке радиусом . Вторая строка системы задает прямую .

Находим координаты точек пересечения графиков:

Ответ:

3. Решите графически систему уравнений:

Первая строка системы задает параболу с ветвями вверх с вершиной в точке .

Так как , то из второй строки системы при условии, что То есть вторая строка системы задает прямую с выколотой точкой

Ответ:

Задания для самостоятельной работы

Решите системы уравнений:

1.

2.

3.

4.

5.

6.

7.

8.

Решите графически системы уравнений:

9.

10.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Урок в 9-м классе «Система уравнений, сводящихся к квадратным»

Разделы: Математика

Цели урока:

  1. Повторить ранее изученные различные способы решения уравнений, сводящихся к квадратным.
  2. Научить сотрудничеству учеников посредством работы в малых группах, а так же взаимопомощи в процессе обучения. 3. Развитие познавательного интереса, интереса к педагогической деятельности.

Форма проведения: Работа в малых группах, с участием консультантов.

ХОД УРОКА

I. Организация начала урока.

Деление на группы

II. Сообщение учащимся цели предстоящей работы. Мотивация учения.

III. Интеллектуальная разминка. (Приложение 1)

Разминка в форме тестовых заданий. Подготовка к ЕГЭ.

IV. Проверка индивидуального домашнего задания, направленного на повторение основных понятий, основополагающих знаний, умений, способов действий. У доски работают консультанты. На предыдущем уроке им было задано индивидуальное домашнее задание.

Системы нелинейных уравнений, сводящихся к квадратным. (Приложение 2)

Решить систему уравнений

Решение: Если вычесть второе уравнение из первого, получим Значит надо решить систему уравнений

откуда . Корнями этого квадратного уравнения служат . Если y1=3, то из находим х1=1. Если же .

Метод введения новых неизвестных при решении систем уравнений. (Приложение 3)

Решить систему уравнений

Решение. Обозначим через u, а через v. Тогда система примет вид

То есть получится система двух линейных уравнений с двумя неизвестными u и v. Из первого уравнения выражаем u через v: и подставляя во второе уравнение, получим , откуда v=2. Теперь находим u=1 и решаем уравнения

Решить систему уравнений

Решение. Заметим, что для решений системы выполняется условие . В самом деле, из первого уравнения системы следует, что если , а числа не удовлетворяют второму уравнению системы. Разделим первое уравнение на . Получится уравнение

Введем вспомогательное неизвестное . Уравнение примет вид . Это квадратное уравнение, имеющее корни . Таким образом, из первого уравнения мы получаем, что либо либо . Осталось подставить выражения и (рассмотрев оба случая) во второе уравнение системы. В первом случае получится уравнение , откуда ; соответственно . Во втором случае получается уравнение , откуда ; соответственно

Возможный способ оформления

разделим первое уравнение на , получим

V. Работа в малых группах.

Решите систему уравнений

Решите систему уравнений

VI. Подведение итогов урока.

VII. Задание на дом.

Задание по группам. Группа консультантов выполняет № 624 (4, 6, 8).

Системы уравнений

Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.

Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.

Например, система уравнений может быть задана следующим образом.

Чтобы решить систему уравнений, нужно найти и « x », и « y ».

Как решить систему уравнений

Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.

Способ подстановки
или
«железобетонный» метод

Первый способ решения системы уравнений называют способом подстановки или «железобетонным».

Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.

Разберем способ подстановки на примере.

Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».

Чтобы выразить неизвестное, нужно выполнить два условия:

  • перенести неизвестное, которое хотим выразить, в левую часть уравнения;
  • разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.

Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.

При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.

Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.

Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.

Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .

Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.