Таблицы значений тригонометрических функций

В этой статье собраны таблицы синусов, косинусов, тангенсов и котангенсов. Сначала мы приведем таблицу основных значений тригонометрических функций, то есть, таблицу синусов, косинусов, тангенсов и котангенсов углов 0, 30, 45, 60, 90, …, 360 градусов ( 0, π/6, π/4, π/3, π/2, …, 2π радиан). После этого мы дадим таблицу синусов и косинусов, а также таблицу тангенсов и котангенсов В. М. Брадиса, и покажем, как использовать эти таблицы при нахождении значений тригонометрических функций.

Навигация по странице.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

Тригонометрические определения синуса, косинуса, тангенса и котангенса позволяют указать значения тригонометрических функций для углов 0 и 90 градусов:
, а котангенс нуля градусов не определен, и
, а тангенс 90 градусов не определен.

В курсе геометрии из прямоугольных треугольников с углами 30 , 60 и 90 градусов, а также 45 , 45 и 90 градусов находятся значения синуса, косинуса, тангенса и котангенса углов 30, 45 и 60 градусов:
,
и
.

Занесем указанные значения тригонометрических функций для углов 0 , 30 , 45 , 60 и 90 градусов ( 0 , π/6 , π/4 , π/3 , π/2 радиан) в таблицу, назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Используя формулы приведения, только что составленную таблицу синусов, косинусов, тангенсов и котангенсов можно расширить, дополнив значениями тригонометрических функций для углов 120 , 135 , 150 , 180 , 210 , 225 , 240 , 270 , 300 , 315 , 330 и 360 градусов ( 0, π/6, π/4, π/3, π/2, …, 2π радиан). При этом она принимает следующий вид.

Опираясь на свойство периодичности синуса, косинуса, тангенса и котангенса, таблицу основных значений тригонометрических функций можно расширить еще, заменив углы 0, 30, 45, 60, 90, …, 360 градусов соответственно на , где z – любое целое число. Из такой таблицы можно найти значения для всех углов, которым соответствуют точки единичной окружности, указанные на чертеже ниже.

Основные значения тригонометрических функций, собранные в заполненной выше таблице, желательно знать наизусть, так как они очень часто используются при решении задач.

Как пользоваться таблицей синусов, косинусов, тангенсов и котангенсов?

Использовать таблицу синусов, косинусов, тангенсов и котангенсов основных углов 0, 30, 45, 60, 90, …, 360 градусов очень просто – она дает непосредственные значения тригонометрических функций, находящиеся на пересечении соответствующей строки, указывающей название тригонометрической функции, и столбца, указывающего данное значение угла.

Например, значение косинуса угла 60 градусов находится на пересечении строки, в крайней левой ячейке которой находится запись cos , и столбца, в верхней ячейке которого записан угол 60 градусов. Так из таблицы находим, что значение косинуса 60 градусов равно одной второй. Для разъяснения приведем графическую иллюстрацию.

Расширенная таблица основных значений тригонометрических функций используется аналогично. С помощью расширенной таблицы основных значений синуса, косинуса, тангенса и котангенса можно сразу указать, например, чему равен тангенс угла 1 020 градусов. Он равен минус корню из трех, так как . Проиллюстрируем это.

Таблицы синусов и косинусов, тангенсов и котангенсов Брадиса

Таблицы синусов, косинусов, тангенсов и котангенсов Брадиса разделены на таблицу синусов и косинусов, а также на таблицу тангенсов и котангенсов. Причем таблица тангенсов и котангенсов состоит из двух частей — тангенсы углов, близких к 90 градусов, и котангенсы малых углов вынесены в отдельную таблицу.

В таблицах Брадиса с точностью до четырех знаков после десятичной запятой приведены приближенные значения синусов и косинусов, а также четыре цифры приближенных значений тангенсов и котангенсов острых углов, содержащих целое число градусов и целое число минут.

Сначала дадим таблицу Брадиса, имеющую название таблица Брадиса: синусы и косинусы.

Теперь приведем таблицу тангенсов углов от 0 до 76 градусов и котангенсов углов от 14 до 90 градусов.

Наконец, осталось заполнить таблицу Брадиса тангенсов углов, близких к 90 градусам, и котангенсов малых углов. Она содержит непосредственные приближенные значения тангенсов углов от 76 до 90 градусов и котангенсов углов от 0 до 14 градусов.

Как пользоваться таблицами синусов и косинусов, тангенсов и котангенсов Брадиса?

Осталось разобраться, как пользоваться таблицей синусов и косинусов, а также таблицами тангенсов и котангенсов Брадиса.

Значение синуса угла находится в таблице синусов на пересечении строки, содержащей в крайней левой ячейке нужное число градусов, и столбца, содержащего в верхней ячейке нужное число минут. Например, из таблицы синусов Брадиса можно определить, что синус 17 градусов 42 минут приближенно равен 0,3040 , вот иллюстрация тому, как это значение было найдено.

Несложно заметить, что в верхней строке минуты идут по порядку через шесть. А как определять значения, если количество минут имеет промежуточное значение, например 44 ? Для этого нужно внести соответствующую поправку, которую дают три крайних правых столбца таблицы. Например, синус 17 градусов 44 минут равен 0,3046 , так как синус 17 градусов 42 минут равен 0,3040 , и требуется еще поправка на 2 минуты в плюс, равна 0,0006 . Поправки содержатся в трех крайних правых столбцах таблицы синусов и косинусов Брадиса.

Если бы нам нужно было найти синус 17 градусов 47 минут, то от значения синуса 17 градусов 48 минут 0,3057 мы бы отняли поправку на 1 минуту, равную 0,0003 . В итоге мы получим искомое значение, равное 0,3054 .

Для нахождения значений косинусов используется та же таблица синусов и косинусов Брадиса. Однако следует ориентироваться на нижнюю строку при выборе соответствующего значения градуса и на четвертую справа строку при выборе нужного числа минут.

Например, косинус 20 градусов равен 0,9397 .

Другой пример: значение косинуса 20 градусов 2 минут равно 0,9397−0,0002=0,9395 , а значение косинуса 20 градусов 5 минут равно 0,9391+0,0001=0,9392 (обратите внимание: что нужно быть внимательным со знаками поправок, нужно помнить, что при возрастании острого угла его косинус убывает).

Таблица тангенсов и котангенсов Брадиса углов от 0 до 76 градусов и котангенсов углов от 14 до 90 градусов используется абсолютно аналогично таблице синусов и косинусов.

К примеру, тангенс 75 градусов 44 минут равен 3,923+0,010=3,933 , а котангенс 32 градусов 50 минут равен 1,5517−0,0020=1,5497 . Вот тому графические иллюстрации.

Таблица тангенсов углов, близких к 90 градусов, и котангенсов малых углов содержит значения тангенсов и котангенсов, не нуждающиеся в поправках. Для примера найдем значение тангенса угла 78 градусов 37 минут, оно равно 4,967 .

А котангенс угла 2 градуса 13 минут равен 25,83 .

Если угол выходит за пределы от 0 до 90 градусов, то сначала следует использовать формулы приведения и перейти к вычислению значения тригонометрической функции, аргумент которой заключен между 0 и 90 градусами. А если угол выражен в радианах, то прежде чем использовать таблицы Брадиса для нахождения синуса, косинуса, тангенса или котангенса данного угла, его нужно перевести в градусы (этому вопросу посвящен материал статьи перевод градусов в радианы и обратно).

Тригонометрическая таблица

В статье, мы полностью разберемся, как выглядит таблица тригонометрических значений, синуса, косинуса, тангенса и котангенса . Рассмотрим основное значение тригонометрических функций, от угла в 0,30,45,60,90. 360 градусов. И посмотрим как пользоваться данными таблицами в вычислении значения тригонометрических функций.
Первой рассмотрим таблицу косинуса, синуса, тангенса и котангенса от угла в 0, 30, 45, 60, 90. градусов. Определение данных величин дают определить значение функций углов в 0 и 90 градусов:

sin 0 0 =0, cos 0 0 = 1. tg 00 = 0, котангенс от 00 будет неопределенным
sin 90 0 = 1, cos 90 0 =0, ctg90 0 = 0,тангенс от 90 0 будет неопределенным

Если взять прямоугольные треугольники углы которых от 30 до 90 градусов. Получим:

sin 30 0 = 1/2, cos 30 0 = √3/2, tg 30 0 = √3/3, ctg 30 0 = √3
sin 45 0 = √2/2, cos 45 0 = √2/2, tg 45 0 = 1, ctg 45 0 = 1
sin 60 0 = √3/2, cos 60 0 = 1/2, tg 60 0 =√3 , ctg 60 0 = √3/3

Изобразим все полученные значения в виде тригонометрической таблицы:

Таблица синусов, косинусов, тангенсов и котангенсов!

Если использовать формулу приведения, наша таблица увеличится, добавятся значения для углов до 360 градусов. Выглядеть она будет как:

Так же исходя из свойств периодичности таблицу можно увеличить, если заменим углы на 0 0 +360 0 *z . 330 0 +360 0 *z, в котором z является целым числом. В данной таблице возможно вычислить значение всех углов, соответствующими точками в единой окружности.

Разберем наглядно как использовать таблицу в решении.
Все очень прост. Так как нужное нам значение лежит в точке пересечения нужных нам ячеек. К примеру возьмем cos угла 60 градусов, в таблице это будет выглядеть как:

В итоговой таблице основных значений тригонометрических функций, действуем так же. Но в данной таблице возможно узнать сколько составит тангенс от угла в 1020 градусов, он = -√3 Проверим 1020 0 = 300 0 +360 0 *2. Найдем по таблице.

Таблица Брадиса. Для синуса, косинуса, тангенса и котангенса.

Таблицы Брадиса поделены на несколько частей, состоят из таблиц косинуса и синуса, тангенса и котангенса — которая поделена на две части (tg угла до 90 градусов и ctg малых углов).

Синус и косинус

tg угла начиная с 00 заканчивая 760, ctg угла начиная с 140 заканчивая 900.

tg до 900 и ctg малых углов.

Разберемся как пользоваться таблицами Брадиса в решении задач.

Найдем обозначение sin (обозначение в столбце с левого края) 42 минут (обозначение находится на верхней строчке). Путем пересечения ищем обозначение, оно = 0,3040.

Ну вот мы и рассмотрели основные тригонометрические таблицы. Надеемся это информация была для вас крайне полезной. Свои вопросы по таблицам, если они появились, обязательно пишите в комментариях!

Заметка: Стеновые отбойники — отбойная доска для защиты стен. Перейдите по ссылке настенные отбойники бескаркасные (http://www. spi-polymer. ru/otboyniki/) и узнайте подробнее.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Одного не могу понять, зачем во всех учебных заведениях требуют выучивать эту тригонометрическую таблицу наизусть?! Неужели нельзя просто ней пользоваться.

В тексте встретила слова «если использовать формулу приведения». Что то я такой и не встречала, покажите пожалуйста что она из себя представляет. Может я ее знаю, да просто по другому называю.

Маленькая таблица понятна, а вот таблица Брадиса это конечно жесть((((((((

Абсолютно никакой сложности в любой таблице тригонометрических значений, а том числе в таблице брадиса, нет. Вот вам ссылка на инструкцию, как пользоваться подобного рода таблицами.

В книге Брадиса есть пояснения же, как пользоваться каждой таблицей и они написаны им самим же!=) И пояснения очень подробные.
И к тому же, таблицы Брадиса знать наизусть вовсе не нужно!=) Для школы же достаточно знать синусы, косинусы, тангенсы и котангенсы для углов 0, 30, 45, 60, 90, 180, 360.

Вот таблицу на 30,45,60 и 90 градусов я помню, а мне на зачете как назло попались задания с большими углами. Пришлось шпоры доставать и спалился.

Таблица синусов, косинусов, тангенсов, котангенсов

Тригонометрия и тригонометрические функции

Тригонометрия – раздел математики, изучающий зависимости углов и сторон треугольников, которые выражены функциями, называемыми тригонометрическими.

Функция – это правило, описывающее зависимость одной величины от другой.

Угол — это геометрическая фигура, образованная двумя линиями, не лежащими на одной прямой и выходящими или пересекающимися в одной точке.

Углы по своему виду могут быть:

  • острыми – меньше 90 градусов
  • тупыми – больше 90 градусов
  • прямыми – равными 90 градусов (прямые или отрезки перпендикулярны)

Треугольник – это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Отрезки называют сторонами треугольника, а точки – вершинами треугольника.

В зависимости от соотношения сторон и углов, треугольники можно разделить на группы:

Прямоугольный треугольник

гипотенуза – сторона прямоугольного треугольника, лежащая против прямого угла и являющаяся самой длинной стороной прямоугольного треугольника.

катет – одна из сторон прямоугольного треугольника, образующая прямой угол треугольника. Может называться противолежащим или прилежащим. Противолежащий – это катет, расположенный напротив рассматриваемого угла треугольника, прилежащий – это катет, прилежащий к рассматриваемому углу треугольника.

Чтобы вычислить какой-либо неизвестный элемент (сторону или угол) имеющегося треугольника, зная часть элементов того же треугольника, используют определенные зависимости (правила) между величинами углов и длинами сторон этого треугольника. Такие зависимости называют тригонометрическими функциями.

К базовым тригонометрическим функциям относятся:

То есть, тригонометрические функций позволяют, зная какой-либо угол и сторону, вычислить значения других неизвестных элементов треугольника.

Таблицы с вычисленными значениями синусов, косинусов, тангенсов, котангенсов.

Для ускорения расчетов, когда нет под рукой калькулятора, смартфона или компьютера, раньше были очень популярны таблицы с заранее вычисленными соотношениями сторон треугольников, выраженными в вычисленных значениях sin, cos, tg.

Например, зная из таблицы значения вычисленных заранее тригонометрических функций известного угла треугольника и длину одной из его сторон, можно быстро вычислить длины других сторон треугольника и величины неизвестных углов.