В основании пирамиды лежит прямоугольный треугольник с катетами 6 и 8 см. Боковые грани равно наклонены к основанию под углом 45 градусов. Найти объём пирамиды

Ответы и объяснения

Vпирамиды = 1/3 Sh,

где h — высота пирамиды, S — площадь основания

Если все боковые грани наклонены к основанию под одним углом, то основанием высоты пирамиды служит центр вписанной в основание пирамиды окружности.

Радиус вписанной в треугольник окружности находим по формуле:

S=pr (Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.)⇒

r — радиус окружности, вписанной в треугольник.

Sосн=24см²
r=24/12=2
Высоту пирамиды найдем из треугольника, образованного радиусом вписанной окружности, высотой пирамиды и апофемой. В нём угол между апофемой и радиусом равен 45°, а другой — 90°, значит, треугольник равнобедренный.

Тогда высота пирамиды равна радиусу: h=r=2.

45. Основание пирамиды — прямоугольный треугольник с катетами 6 см и 8 см. Все двугранные углы при основании пирамиды равны 60°. Найдите высоту пирамиды.

Проведем SO — высоту пирамиды и перпендикуляры SK, SM и SN к соответствующим сторонам ΔАВС.

Тогда по теореме о трех перпендикулярах OK ⊥ ВС, ОМ ⊥ АС и ON ⊥ AB. Так что ∠SKO = ∠SMO = ∠SNO = 60° — линейные углы данных двугранных углов. Значит, треугольники SKO, SMO и SNO равны по катету и острому углу. Тогда OM = OK = ON, то есть точка О является центром окружности, вписанной в основание. В прямоугольном ΔAВС:

В основании пирамиды лежит прямоугольный треугольник, катеты которого 6 и 8 см. Все боковые ребра пирамиды равны 13 см. Вычислите высоту этой пирамиды.

Ответы и объяснения

Если все боковые ребра пирамиды равны, то вершина пирамиды проецируется в центр окружности описанной около основания. В основании прямоугольный треуг-к, значит центр окружности является серединой гипотенузы. Рассмотрим основание пирамиды треуг-к АВС. По т. Пифагора

AO=10:2=5 (cм) — радиус описанной окружности.

SO — высота пирамиды. S — вершина пирамиды.