Вычислить площадь фигуры ПРИМЕРЫ

Вычислить площадь фигуры, ограниченной линиями .

Находим точки пересечения заданных линий. Для этого решаем систему уравнений:

Для нахождения абсцисс точек пересечения заданных линий решаем уравнение:

Итак, данные линии, представляющие собой параболу и прямую, пересекаются в точках A(-2; 0), B(4; 6).

Эти линии образуют замкнутую фигуру, площадь которой вычисляем по указанной выше формуле:

По формуле Ньютона-Лейбница находим:

Найти площадь области, ограниченной эллипсом .

Из уравнения эллипса для I квадранта имеем . Отсюда по формуле получаем

Применим подстановку x = a sin t, dx = a cos t dt. Новые пределы интегрирования t = α и t = β определяются из уравнений 0 = a sin t, a = a sin t. Можно положить α = 0 и β = π/2.

Находим одну четвертую искомой площади

Найдем точки пересечения линий y = —x 2 + x + 4, y = —x + 1, приравнивая ординаты линий: —x 2 + x + 4 = —x + 1 или x 2 — 2x — 3 = 0. Находим корни x1 = -1, x2 = 3 и соответствующие им ординаты y1 = 2, y2 = -2.

По формуле площади фигуры получаем

Решая систему уравнений

находим абсциссы точек пересечения x1 = -2 и x2 = 1.

Полагая y2 = 3 — x и y1 = x 2 + 1, на основании формулы получаем

В полярной системе координат площадь фигуры, ограниченной дугой кривой r = f(φ) и двумя полярными радиусами φ1 = ʅ и φ2 = ʆ, выразится интегралом

В силу симметрии кривой определяем сначала одну четвертую искомой площади

Следовательно, вся площадь равна S = a 2 .

Запишем уравнение астроиды в виде

Отсюда получаем параметрические уравнения астроиды

Ввиду симметрии кривой (*) достаточно найти одну четвертую часть длины дуги L, соответствующую изменению параметра t от 0 до π/2.

Интегрируя полученное выражение в пределах от 0 до π/2, получаем

Решим систему уравнений

и получим x1 = 0, x2 = 1, y1 = 0, y2 = 1, откуда точки пересечения кривых O(0; 0), B(1; 1). Как видно на рисунке, искомый объем тела вращения равен разности двух объемов, образованных вращением вокруг оси Ox криволинейных трапеций OCBA и ODBA:

а) На отрезке [0, π] функция sin x сохраняет знак, и поэтому по формуле , полагая y = sin x, находим

б) На отрезке [0, 2π], функция sin x меняет знак. Для корректного решения задачи, необходимо отрезок [0, 2π] разделить на два [0, π] и [π, 2π], в каждом из которых функция сохраняет знак.

По правилу знаков, на отрезке [π, 2π] площадь берется со знаком минус.

В итоге, искомая площадь равна

Определить объем тела, ограниченного поверхностью, полученной от вращения эллипса вокруг большой оси a.

Учитывая, что эллипс симметричен относительно осей координат, то достаточно найти объем, образованный вращением вокруг оси Oxплощади OAB, равной одной четверти площади эллипса, и полученный результат удвоить.

Обозначим объем тела вращения через Vx; тогда на основании формулы имеем , где 0 и a — абсциссы точек B и A. Из уравнения эллипса находим . Отсюда

Таким образом, искомый объем равен . (При вращении эллипса вокруг малой оси b, объем тела равен )

Сначала найдем координаты точек пересечения парабол, чтобы определить отрезок интегрирования. Преобразуя исходные уравнения, получаем и . Приравнивая эти значения, получим или x 4 — 8p 3 x = 0.

Находим корни уравнений:

Учитывая то факт, что точка A пересечения парабол находится в первой четверти, то пределы интегрирования x = 0 и x = 2p.

Площадь фигуры, ограниченной линиями

Пример №1 . Вычислить площадь фигуры, ограниченной линиями и x+y=6 .
Решение. Построим в системе координат xOy эти линии. Найдем точки пересечения этих линий

Обозначим эти точки через A и В. Итак, А(1; 5), В(5; 1). Искомая площадь S равна разности площадей фигур, ограниченных линиями x=1, x=5, y=0,y=6-x (обозначим эту площадь через S1) и линиями x=1 , x=5 , y=0 , (эту площадь обозначим через S2). Таким образом
S = S1 – S2 =
Площадь S2 может быть вычислена с применением определенного интеграла
ед 2 .
Площадь S1 можно вычислить как сумму площадей прямоугольного треугольника и прямоугольника, но удобнее все-таки вычислить S1 как интеграл
.
Теперь можно вычислить и искомую площадь
S = S1 – S2 = 12 – 5 ln5
Ответ: S =12 – 5 ln5 ед 2 .

Задача № 3. Сделайте чертеж и вычислите площадь фигуры, ограниченной линиями

Приложение интеграла к решению прикладных задач

Вычисление площади

Определённый интеграл непрерывной неотрицательной функции f(x) численно равенплощади криволинейной трапеции, ограниченной кривой y = f(x), осью Ох и прямыми х = а и х = b. В соответствии с этим формула площади записывается так:

Рассмотрим некоторые примеры на вычисление площадей плоских фигур.

Задача № 1. Вычислить площадь, ограниченную линиями y = x 2 +1, y = 0, x = 0, x = 2.

Решение. Построим фигуру, площадь которой мы должны будем вычислить.

y = x 2 + 1 – это парабола ветви которой направлены вверх, и парабола смещена относительно оси Oy вверх на одну единицу (рисунок 1).

Рисунок 1. График функции y = x 2 + 1

Задача № 2. Вычислить площадь, ограниченную линиями y = x 2 – 1, y = 0 в пределах от 0 до 1.

Решение. Графиком данной функции является парабола ветви, которой направлены вверх, и парабола смещена относительно оси Oy вниз на одну единицу (рисунок 2).

Рисунок 2. График функции y = x 2 – 1

Задача № 3. Сделайте чертеж и вычислите площадь фигуры, ограниченной линиями

y = 8 + 2x – x 2 и y = 2x – 4.

Решение. Первая из двух данных линий – парабола, направленная ветвями вниз, поскольку коэффициент при x 2 отрицательный, а вторая линия – прямая, пересекающая обе оси координат.

Для построения параболы найдем координаты ее вершины: y’=2 – 2x; 2 – 2x = 0, x = 1 – абсцисса вершины; y(1) = 8 + 2∙1 – 1 2 = 9 – ее ордината, N(1;9) – вершина.

Теперь найдем точки пересечения параболы и прямой, решив систему уравнений:

Приравнивая правые части уравнения, левые части которых равны.

Получим 8 + 2x – x 2 = 2x – 4 или x 2 – 12 = 0, откуда .

Итак, точки – точки пересечения параболы и прямой (рисунок 1).

Рисунок 3 Графики функций y = 8 + 2x – x 2 и y = 2x – 4

Построим прямую y = 2x – 4. Она проходит через точки (0;-4),(2;0) на осях координат.

Для построения параболы можно еще ее точки пересечения с осью 0x, то есть корни уравнения 8 + 2x – x 2 = 0 или x 2 – 2x – 8 = 0. По теореме Виета легко найти его корни: x1 = 2, x2 = 4.

На рисунке 3 изображена фигура (параболический сегмент M1N M2), ограниченный данными линиями.

Вторая часть задачи состоит в нахождении площади этой фигуры. Ее площадь можно найти с помощью определенного интеграла по формуле .

Применительно к данному условию, получим интеграл:

2 Вычисление объёма тела вращения

Объём тела, полученного от вращения кривой y = f(x) вокруг оси Ох, вычисляется по формуле:

При вращении вокруг оси Оy формула имеет вид:

Задача №4. Определить объём тела, полученного от вращения криволинейной трапеции, ограниченной прямыми х = 0 х = 3 и кривой y = вокруг оси Ох.

Решение. Построим рисунок (рисунок 4).

Рисунок 4. График функции y =

Искомый объём равен

Задача №5. Вычислить объём тела, полученного от вращения криволинейной трапеции, ограниченной кривой y = x 2 и прямыми y = 0 и y = 4 вокруг оси Oy.

Вопросы для повторения

1 Что называется интегрированием функции?

2 Основные свойства неопределённого интеграла.

3 В чём состоит геометрический смысл неопределённого интеграла.

4 Основные формулы интегрирования.

5 Способ подставки и способ интегрирования по частям.

6 Определённый интеграл.

7 Свойства определённого интеграла

8 Формула Ньютона – Лейбница.

9 Геометрический смысл определённого интеграла.